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Biodiversity declines are accelerating across the world1–3, with 
one fifth of terrestrial vertebrates threatened with extinction 
(categorized by the International Union for the Conservation 

of Nature (IUCN) as Vulnerable, Endangered, or Critically 
Endangered4). Habitat loss driven by agricultural expansion is the 
greatest threat to terrestrial vertebrates5,6. If current agricultural 
trends continue, pressures on biodiversity will increase substan-
tially; projections based on population growth7 and dietary tran-
sitions estimate the need for 2–10 million km2 of new agricultural 
land, largely cleared at the expense of natural habitats8–11. In the 
face of these trends, conventional conservation approaches, such 
as site-based conservation, may be insufficient to conserve biodi-
versity12,13. Policies to reduce the underlying threats to biodiversity, 
such as agricultural expansion, through proactive approaches will 
probably be needed to complement existing efforts5,14.

Responding to the impending biodiversity crisis requires 
decisions informed by high-resolution, spatially explicit and 
species-specific assessments of many thousands of species to iden-
tify the species and landscapes most at risk. Results from these 
assessments can be used to help plan appropriate conservation 
responses, such as species- or location-specific legislation, and to 
assess which proactive changes to food systems have the greatest 
potential to reduce future threats to biodiversity before they occur. 
The utility of most existing analyses for conservation planning  
and action has been limited by coarse spatial resolutions, a focus  
on a relatively small suite of species or on generalized biodiver-
sity metrics such as species richness, or using narrative pathways  
that are neither tied to current agricultural trajectories nor able 
to examine how specific changes to food systems might mitigate 
future biodiversity declines5,12,15,16 (Methods and Supplementary 
Information).

We address these limitations by developing an analytical frame-
work that increases both the breadth and specificity of analyses, as 
well as their applicability to conservation efforts (Supplementary  
Fig. 1). Specifically, we analyse at a high spatial resolution 
(1.5 × 1.5 km) the impacts of likely agricultural expansion on an 
unprecedented number of species (almost 20,000) while explic-
itly accounting for differences in how individual species may be 
impacted by agricultural land-use change, and by analysing how 
proactive food-system transitions might mitigate future biodiver-
sity declines. In total, this approach enables us to identify the spe-
cies and landscapes most at risk from agricultural expansion under 
current trajectories, as well as how alternative proactive agricultural 
policies might reduce these threats.

Projecting agricultural expansion under business-as-usual
We developed a flexible and high-resolution approach to modelling 
agricultural land-cover change. Our approach is built on observed 
empirical relationships between historical changes in agricul-
tural land cover and known correlates of agricultural land-cover 
change (Methods and Supplementary Fig. 2). This differs from 
the approaches employed by global food system models such as 
IMAGE17, MAgPIE18 or GLOBIOM19, which are based more on 
economic theory and expert opinion than on empirically observed 
patterns and changes. Our high-resolution projections explore agri-
cultural scenarios that are derived from observed relationships and 
trends, and can thus incorporate factors which are not accounted 
for in economic theory (for example, strong or weak enforcement 
of protected areas or the non-economic factors that determine agri-
cultural expansion) and also be readily updated as new land-cover 
data become available. To achieve this, we developed a flexible, spa-
tially explicit, land allocation model at a resolution of 1.5 × 1.5 km 
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based on observed changes in agricultural land cover from 2001 to 
2013 and spatially explicit data on likely determinants of land-cover 
change, including the suitability of an area for agricultural produc-
tion20, current agricultural land cover21, previous patterns of agri-
cultural land-cover change21, proximity to other agricultural land21, 
market access22 and the location of protected areas23. Specifically, we 
used satellite-derived historical land-cover data21 from 2002 to 2007 
to fit region-specific multinomial models to estimate the probability 
that agricultural land cover in individual cells increased, decreased 
or remained the same from 2007 to 2012. Next, we used the same 
satellite data to fit region-specific generalized linear models to esti-
mate the magnitude of any such change from 2007 to 2012.

We then paired this two-part land allocation model with 
country-level estimates from 2010 to 2050 of agricultural land 
demand at five-year intervals derived from the EAT-Lancet global 
food system model11, which accounts for domestic food demand and 
international patterns of trade. For each country and timestep, we 
used the land allocation model to first probabilistically select cells 
to experience a change in agricultural land-cover extent, and second 
to estimate the magnitude of this change. This process was repeated 
until a country’s estimated agricultural land demand was met, and 
then replicated 25 times to account for the probabilistic nature of 
the model. Spatial patterns of agricultural expansion were consistent 
across model iterations (Supplementary Figs. 3 and 4) and we there-
fore report results using the mean of the 25 model iterations.

Under business-as-usual (that is, based on current trajecto-
ries), we projected a total increase in global cropland of 26% or 
3.35 million km2 from 2010 to 2050. We projected particularly 
large increases in agricultural land throughout sub-Saharan Africa 
(particularly tropical West Africa, the Rift Valley, and in the south-
ern Sahel), South and Southeast Asia (particularly Bangladesh, 
Pakistan, and southern Malaysia) and to a lesser extent Central 
and South America (large increases in northern Argentina and 
much of Central America, smaller increases across southern Brazil) 
(Fig. 1 and Supplementary Fig. 5). These increases were driven by 
the EAT-Lancet model projecting income-dependent transitions 
towards diets that contain more calories and larger quantities of 
animal-based foods (Supplementary Fig. 6), combined with high 
levels of projected population growth (Supplementary Fig. 7) and 
low crop yields that are projected to increase slowly, particularly 
in sub-Saharan Africa (Supplementary Fig. 8). In North America, 
we model projected increases in agricultural land in south-central 
Canada and throughout the United States but centred in the south-
east, due largely to the EAT-Lancet model projecting increased 
demand for international exports. However, a combination of lower 
projected population increases than in sub-Saharan Africa, South 
and Southeast Asia, and Latin America, and higher crop yields led 
to smaller projected increases in agricultural land compared with 
these regions (Fig. 1 and Supplementary Fig. 5). In contrast, we 
projected reductions in agricultural land demand across Eastern 
Europe and Central and Northern Asia (especially in southern 
Russia and eastern Belarus) due to small dietary changes projected 
by the EAT-Lancet model combined with low or negative rates of 
population growth and high or increasing crop yields (Fig. 1 and 
Supplementary Figs. 5–8).

Habitat losses under business-as-usual
We next estimated changes in habitat area24 from 2010 levels for 
each of 4,003 amphibian, 10,895 bird and 4,961 mammal species. To 
do so, we overlaid our projections of future agricultural cover with 
maps of 2010 habitat for each species25–27, and used species-specific 
assessments of whether each species can survive and reproduce in 
agricultural land4 to calculate changes in total area of habitat (AOH) 
for each species (Methods). We acknowledge that, because a species’ 
population density will vary across its available habitat due to dif-
ferences in climate, land cover, land-use intensity or abundances of 

other species16,28, habitat loss may not linearly equate to population 
change.

Under business-as-usual trajectories, we projected that 87.7% 
of species (17,409 species) would lose some habitat by 2050, 6.3% 
would have no change in habitat area and 6.0% would have an 
increase in habitat area due to their survival on agricultural land, 
with 72.9% of these (877 species) being birds. If natural habitats are 
allowed to regrow on abandoned agricultural land, these numbers, 
once habitats have re-established, are projected to be 76.1%, 6.1% 
and 17.8%, respectively, with considerable benefits for some spe-
cies (Supplementary Data 1). Given the long time required for com-
plete recovery after agricultural abandonment29, we report results 
assuming that habitats do not recover in the timeframe consid-
ered, although our overall conclusions do not differ if we alter this 
assumption (Supplementary Data 1).

We projected a mean ± standard error of the mean (s.e.m.) loss 
of 5.8 ± 0.1% of 2010 habitat across all 19,859 species in the analysis 
(range: 100% loss to 78.2% increase); across species losing habitat, 
this value was 6.7 ± 0.9%, but with considerable variation between 
regions and species (Fig. 2). Projected mean habitat losses were 
greatest in sub-Saharan Africa (14.4 ± 0.3% across all species) with 
particularly large losses for amphibians in equatorial West Africa 
(where five ecoregions had projected mean losses of over 25% and 
ten ecoregions had projected mean losses over 20%; Supplementary 
Table 1) and for mammals in East Africa (eight ecoregions had pro-
jected mean losses over 18%; Supplementary Table 1). Large mean 
habitat losses were also projected in the Atlantic forest in Brazil, in 
eastern Argentina, across Central America and the Caribbean and 
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Fig. 1 | Projected extent of agricultural land in 2050 under business-as- 
usual. a, Projected change in the proportion of agricultural land (cropland 
plus pastureland, in colour) in each 1.5 × 1.5 km cell from 2010 to 2050 
overlaid on proportions of agricultural land in 2010 for cells not projected 
to experience a change in extent (in greyscale). Note the offset scale to 
highlight areas with small decreases in the proportion of agricultural land. 
b, Projected proportion of agricultural land in each cell in 2050. Map 
produced using Natural Earth data version 2.0 (www.naturalearthdata.com).
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in parts of South and Southeast Asia (Fig. 2 and Supplementary 
Table 1).

Mean values conceal the severity of projected habitat losses 
for many species. By 2050, 1,280 species were projected to lose at 
least 25% of their remaining habitat area (Fig. 3a) and could be at 
increased risk of global extinction. Of these species, 980 are not 
currently classified as globally threatened according to the IUCN 
and so may not be a primary focus of current conservation efforts. 
More alarmingly, 347 species were projected to lose at least 50% of 
their remaining habitat, 96 at least 75%, and 33 at least 90%. A high 
proportion of these heavily impacted species are currently listed as 
globally threatened with extinction (34%, 52% and 55%, respec-
tively), strongly suggesting that agricultural expansion could lead 
to the regional or global extinction of many species in the coming 
decades. This highlights the need for analyses that project how and 
where future threats to biodiversity are likely to emerge, allowing 
conservationists and policymakers to proactively mitigate threats.

Overall biodiversity impact will be greatest where high rates of 
habitat loss coincide with large numbers of species (Supplementary 
Fig. 9). Loss of total habitat area (the mean habitat loss within a 
cell multiplied by the number of species present) and the number of 

species losing at least 25% of their habitat were projected to be high-
est in sub-Saharan Africa, particularly the Rift Valley, and through-
out tropical West Africa (Fig. 3b,c). In sub-Saharan Africa, 22.5% of 
species (941 species: 179 amphibians, 406 birds and 356 mammals) 
were projected to lose at least 25% of their remaining habitat, with 
44 out of 52 sub-Saharan African countries containing at least 25 
such species (Supplementary Data 7). Projected habitat losses were 
also high in Latin America, particularly southeast Brazil and the 
remaining Atlantic forest, with 246 species, including 99 amphib-
ians, projected to lose at least 25% of their habitat (Fig. 3b). Our 
results highlight the disproportionate share of local, regional, or 
even global extinctions that sub-Saharan Africa and Latin America 
are projected to account for: containing 93% of the species projected 
to lose ≥25% of their remaining habitat. These continent-wide 
patterns of habitat loss could radically transform ecosystems that  
hold a large proportion of the world’s biodiversity, particularly  
large mammals in sub-Saharan Africa and birds and amphibians  
in Latin America5.

We projected small decreases in agricultural land in parts of 
Europe, Central and Northern Asia, China, Australia, and New 
Zealand (Fig. 1a). If these lands are allowed to revert to a natural 
state (a process that may take many decades30) then there is the pos-
sibility for small increases in habitat area in these regions. However, 
these potential increases for some species were far outweighed by 
projected losses in habitat area for others. Allowing for habitat 
recovery or restoration after agricultural abandonment has a minor 
impact on the overall projections of widespread habitat loss across 
all species examined (Supplementary Data 1).

Proactive food system changes to reduce biodiversity 
threats
The projected severity of agricultural land-cover change on habi-
tat area means that proactive policies to reduce future demand for 
agricultural land will probably be required to mitigate widespread 
biodiversity declines. To investigate the potential of such proactive 
approaches, we developed a scenario that implemented four changes 
to food systems: closing crop yield gaps globally, a global transition 
to healthier diets, halving food loss and waste, and global agricultural 
land-use planning to avoid competition between food production 
and habitat protection. In addition, to identify the relative impacts 
of specific changes to the food system, we investigated the impacts of 
each approach individually. We used previously published scenarios 
for yield increases, diets and food waste5,11, and used projected habi-
tat losses in the business-as-usual scenario to identify the countries 
that could most benefit from global agricultural land-use planning. 
In each case, we assumed each approach was steadily adopted, such 
that the complete transition was only achieved in 2050 (Methods 
and Supplementary Information). Under the ‘combined approach’ 
scenario, employing all four approaches, we projected that global 
cropland would, by 2050, actually decline by nearly 3.4 million km2 
relative to 2010, and by 6.7 million km2 relative to business as usual 
(Supplementary Table 2 and Supplementary Fig. 11).

We also projected that under the combined approach all regions 
would see mean habitat losses of 1% or less by 2050 (Fig. 4). That 
is, with global coordination and rapid action, it should be possible  
to provide healthy diets for the global population in 2050 with-
out major habitat losses. The greatest benefits compared with 
business-as-usual were in sub-Saharan Africa, where we projected 
a mean loss of global habitat of 1.0 ± 0.04% under the combined 
approach compared with a mean loss of 14.4 ± 0.3% under busi-
ness as usual (Fig. 4 and Supplementary Figs. 12–14). If natural 
habitats are allowed to regrow in abandoned agricultural land, then 
we projected mean habitat area would increase in every region 
(Supplementary Figs. 15 and 16 and Supplementary Data 1).

Perhaps more importantly, habitat losses were far less severe 
for the species most heavily impacted under business-as-usual. 
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Fig. 2 | Projected changes in habitat area from 2010 to 2050 under 
business-as-usual. a–c, Projected changes in habitat area from 2010 to 
2050 under business-as-usual conditions for amphibians (a), birds (b)  
and mammals (c). Maps show the mean change in habitat area for all 
species within a cell, with values on a log10 scale. Insets show the mean 
change in habitat area for all species within a region, error bars show  
s.e.m. Supplementary Data 2 details which countries are included in  
each region. Map produced using Natural Earth data version 2.0  
(www.naturalearthdata.com).
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Globally, under the combined approach scenario, only 33 species 
were projected to lose more than 25% of their habitat, compared 
with 1,280 under business-as-usual. Thus, our analyses demonstrate 

that addressing the underlying drivers of agricultural expansion has 
the potential to greatly benefit the most at-risk species, and thereby 
reduce extinction risks. However, the majority of species (81.6%) 

–10,000 0 10,000
Change in total habitat area

b

c

0 108 216

Number of species losing ≥25% of habitat

25–49 50–74 ≥75 25–49 50–74 ≥75 25–49 50–74 ≥75
0

100

200

300

400

N
um

be
r o

f s
pe

ci
es

Current IUCN category

Least Concern Near Threatened Data Deficient Vulnerable Endangered Critically Endangered

a

Percentage of 2010 habitat lost

MammalsAmphibians Birds
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were still projected to lose small amounts of habitat, suggesting that 
conventional conservation measures will continue to be vital to pro-
tect biodiversity.

The impacts of individual approaches varied regionally. Closing 
yield gaps was projected to have the largest overall benefits  
(Fig. 4), and was particularly effective in North Africa, West Asia, 
and sub-Saharan Africa, where large yield gaps remain31,32. When the 
only change from business-as-usual practices was closing yield gaps, 
33 species in these regions were projected to lose more than 25% of 
their habitat, compared with 953 under business-as-usual. Projected 
benefits were considerably lower in other regions where yield gaps 
are smaller, but still reduced the number of such species from 361 
to 103. The magnitude of these projected benefits supports, and is 
supported by, recent analyses investigating the land-saving poten-
tial of closing yield gaps across the world33,34. However, increasing 
yields often has negative consequences for species within agricul-
tural lands16,35,36. As such, while all scenarios could see declines in 
the suitability of croplands by 2050, this effect may be exacerbated 
by closing yield gaps. For most species, these losses are likely to be 
outweighed by the land-saving benefits of yield increases35, but the 
benefits of closing yield gaps may be reduced for some species that 
rely heavily on agricultural lands.

Transitioning to healthier diets and reducing food waste were 
projected to have considerable benefits, while not completely elimi-
nating habitat losses, particularly in wealthier regions with high 
per capita consumption of both calories and animal-based foods, 
and in regions such as South America with high consumption of 

animal-based foods (Fig. 4). In contrast, projected benefits from 
global land-use planning were far smaller, with 1,026 species still 
projected to lose at least 25% of their 2010 habitat. The biggest ben-
efits of global land-use planning were in sub-Saharan Africa, where 
all the countries with reduced agricultural land demand under this 
scenario were located. Even here, however, there were still 646 spe-
cies projected to lose ≥25% of their 2010 habitat, compared with 
942 under business-as-usual, 673 under healthy diets and 695 under 
halved food waste.

Maintaining biodiversity in a world with ten billion people
Our projections suggest that, under business-as-usual, agricultural 
expansion will drive widespread and severe biodiversity declines, 
but that these could be avoided with concerted, proactive efforts to 
address food consumption and production as ultimate drivers of 
biodiversity loss. Our approach and results are immediately relevant 
to international efforts for the development of new strategic goals 
and targets for 2030 and 2050 under the auspices of the Convention 
on Biological Diversity in 2021. We identify the policy approaches 
with the greatest potential to combat the underlying drivers of 
future biodiversity declines in different countries and highlight, at 
spatial scales relevant to conservation action, the species and land-
scapes most at risk. These results can support proactive planning 
of both on-the-ground conservation schemes and changes to the 
wider food system to mitigate threats.

Our approach offers an empirically derived complement to 
integrated assessment models such as GLOBIOM19, MAgPIE18 and 
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IMAGE17. Despite the difference in approaches, our projections are 
in broad agreement with those based on Shared Socioeconomic 
Pathways (SSPs), except for projected agricultural expansion in 
North America, which is not seen under all the pathways37. This 
difference results from increased crop demand projected by the 
EAT-Lancet projections11 and is in agreement with analyses based 
on other, non-SSP projections38. Our projections are at a higher 
resolution than most existing efforts, while the modular and adapt-
able nature of the land allocation model means it can be easily 
updated as new data become available, and can be paired with any  
estimate of future agricultural land demand at local to global 
scales (Supplementary Fig. 1). There are likely to be nonlineari-
ties in future agricultural expansion, for example, the construction 
of a new road or the degazetting of a protected area could lead to 
rapid agricultural expansion in a region that neither our approach 
nor integrated assessment models highlight as vulnerable. Our 
approach, however, allows for the rapid inclusion of these changes 
into projections by adjusting the value of explanatory variables (in 
these cases, travel time and the presence of a protected area) and 
recalculating the probability of future agricultural expansion. Thus, 
we hope that our approach can help provide a dynamic and respon-
sive tool for decision-makers to investigate the potential impacts of 
different policies.

In reality, threats to biodiversity could be considerably greater 
than those we project: other projections of future agricultural land 
demand are higher than those we use5, and we do not include the 
impacts of anthropogenic climate change, habitat fragmentation, 
over-exploitation, invasive species or pollution5,6,39–41. Climate 
change is likely to drive widespread changes in biodiversity by alter-
ing the location of suitable habitats and environments, and may have 
synergistic effects with habitat loss and fragmentation from agricul-
tural expansion41. In addition, its effect on agricultural yields42 and 
the relative suitability of different regions for various crops43 could 
have indirect impacts on biodiversity by altering patterns of agri-
cultural expansion. Uncertainty in how climatic changes will affect 
agriculture44 and species45 precludes quantitatively assessing these 
impacts, but we note that the scenarios we discuss could also help 
reduce the impacts of climate change and other threats. Reducing 
demand for new cropland can reduce greenhouse gas emissions 
from land-use change, reduce habitat fragmentation and lessen 
the opportunity costs of protected areas for local people46, while 
land-use planning could help preserve unfragmented habitats or 
allow habitat restoration.

Here we demonstrate the potential conservation benefits of mul-
tiple approaches, but our findings are still a long way from specific 
policy recommendations. Actions will require locally appropriate 
policies, taking into account individual countries’ socioeconomic 
and governance environments, cultural acceptance of different 
strategies, and on-the-ground capacity to implement strategies. Past 
successes can provide insights into how to ensure that strategies 
are both effective and maintain fair and equitable access to food, 
for example, through increasing crop yields47–49, shifting to health-
ier diets50–52, reducing food and crop waste53,54 and implementing 
landscape-scale land-use planning55. Learning from previous efforts 
to increase sustainability can also be used to avoid unintended con-
sequences, such as when increases in agricultural yields promote 
local agricultural expansion56.

Although fully achieving the approaches we investigated may 
not be feasible in all regions, even the partial implementation of 
proactive approaches could be environmentally beneficial. As we 
approach the updating of the Convention on Biological Diversity’s 
targets for global biodiversity conservation in 2021, and the half-
way point of the Sustainable Development Goals in 2022, our 
results strongly suggest there are co-benefits to biodiversity from 
appropriate agriculture-related development: reducing agricul-
tural land-cover change can reduce anthropogenic climate change 

and alleviate poverty by increasing farmer incomes, and shifting 
to healthier diets and reducing food waste can reduce hunger and 
support better health and sustainable consumption. These proactive 
efforts to change how we produce and consume food will be a major 
challenge, but one which cannot be avoided if we are to safeguard 
species for future generations.

Methods
To project impacts of future agricultural land-cover change on biodiversity, we 
linked a land demand model, a land allocation model and a biodiversity model 
in a flexible framework (Supplementary Fig. 1). This approach can be readily 
modified, for example, to different future scenarios or different spatial scales, 
or to incorporate new data as they become available. Collectively, this approach 
enables us to project changes in land cover and their impacts on habitat availability 
for individual species at a resolution of 1.5 × 1.5 km for every five years from 
2010 to 2050. Our analysis includes nearly 20,000 species of birds, mammals 
and amphibians, and 152 nations that occupy >99% of Earth’s ice-free land and 
contain >99% of current agricultural land (Supplementary Data 2). Full details of 
model specification, datasets used, and sensitivity analyses are in Supplementary 
Information.

Land-demand model. Projecting agricultural land demand under business as usual.  
We combined income- and trade-dependent projections of country-specific 
agricultural production under business-as-usual conditions (that is, continuing 
historical trajectories) from the EAT-Lancet Commission11 with the United Nation’s 
(UN) medium-fertility population projection57,58, and previously published yield 
projections5. We did not use the population projections used in EAT-Lancet 
because they are derived from SSP scenarios59 and so are not updated to account 
for recent population trends. As such, SSP2 (the pathway most similar to current 
business-as-usual trajectories) projects approximately 570 million fewer people 
worldwide than current UN medium-variant population projections7. Additionally, 
we did not use the yield scenarios from the EAT-Lancet projections because they 
assume increases in future crop yields at faster-than-historical trajectories11, 
something for which there is no empirical support60. We instead used published 
crop-yield forecasts that project crop yield increases along historical linear 
trajectories but which cannot surpass current country-specific maximum potential 
yields5,31,32.

We projected cropland demand for each country for each five-year period 
from 2010 to 2050. To do so, we divided projections of demand for national food 
production (estimated by combining EAT-Lancet projections with UN population 
projections) by crop-yield projections. EAT-Lancet estimates of current cropland 
are based on Food and Agriculture Organization (FAO) data20, while the Land 
Allocation Model is based on moderate resolution imaging spectroradiometer 
(MODIS) satellite data21. We therefore harmonized EAT-Lancet projections with 
satellite data by (1) calculating proportional change in cropland in each five-year 
period from 2010 to 2050 from the EAT-Lancet and UN projections, (2) estimating 
the total cropland in each country in 2010 based on MODIS data, (3) multiplying 
this satellite-derived estimate by the projected change in proportional demand 
and (4) capping country-specific land-demand projections at FAO estimates of 
potential arable land in each country61. This ensures continuity between datasets 
but could lead to under-projecting agricultural expansion in countries where 
cropland is under-detected by satellite data (for example, where very small areas 
are farmed or farming is largely under dense tree cover).

We assumed the area of pastureland remained constant for each country, 
following recent patterns61, and re-allocated pastureland within a country if 
cropland expanded into existing pastureland. See Supplementary Information for 
more details.

Agricultural land demand under alternative scenarios. To investigate the impact 
of proactive policies that could reduce future cropland demand, we repeated the 
business-as-usual analysis with five alternative scenarios (Supplementary Table 3 
details assumptions of different scenarios):

 1. Close yield gaps: yields increase linearly from current yields to 80% of the 
estimated maximum potential31,32 by 2050. Increasing yields above 80% is 
rarely achieved over large areas62.

 2. Healthier diets: diets transition from current diets to healthier composition 
and caloric quantity11.

 3. Halved food waste: food loss and waste throughout entire food supply chains 
is reduced from current rates63 by 25% by 2030 and 50% by 2050.

 4. Global land-use planning: agricultural production shifts from the 25 coun-
tries projected to have the greatest mean losses of suitable habitat across 
all species to countries where less than 10% of species are threatened with 
extinction and less than 10% of species would qualify as being threatened 
with extinction under IUCN Criteria B264 under business-as-usual in 2050. 
The shift in agricultural production is gradual, such that an additional 10% of 
total food demand is imported by 2030 and by 20% in 2050. The goal of this 
scenario is to estimate the impact on biodiversity of land-use planning across 
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international borders, avoiding expansion in the most at-risk countries. We 
recognize this scenario could be antagonistic to food security and sovereignty, 
especially in countries where agriculture is a large source of employment  
and/or income.

 5. Combined approach: all four approaches were adopted simultaneously.

We assumed each approach was steadily adopted, such that the complete 
transition was only achieved in 2050. We estimated that by 2050 each approach 
individually (with the exception of global land-use planning) could reduce 
global demand for cropland by at least 2 million km2, while simultaneous 
adoption of all four scenarios would reduce global land demand by ~6.7 
million km2 (Supplementary Table 2 and Supplementary Fig. 11). Global 
land-use planning had smaller impacts, reducing global demand by 230,000 km2. 
See Supplementary Information for more explanation on the alternative 
land-demand scenarios.

Land-allocation model. We developed a novel and high-resolution (1.5 × 1.5 km) 
spatial allocation model using observed relationships between explanatory 
variables and changes in land cover to project future spatial patterns of agricultural 
land-cover change. We fitted relationships between empirically observed changes 
in cropland or pastureland and a set of key explanatory variables and assumed that 
these fitted relationships remain constant into the future. Thus, we are not simply 
extrapolating past changes in agricultural land into the future, but rather basing 
projections on an understanding of the factors that shape how spatial patterns of 
agricultural land-cover evolve.

By separating projections of agricultural land demand from its spatial 
allocation, our approach enables the investigation of how specific interventions 
might influence future land-use change and biodiversity loss. Our projections are 
at a far higher resolution than existing projections of agricultural land-use change, 
for example, GLOBIOM (5–30 arcminutes; approximately 100–2,500 km2 at the 
Equator)19, CLUMondo and MAgPie (30 arcminutes; approximately 2,500 km2 at 
the Equator)18,38. This allows stakeholders to identify areas likely to experience large 
biodiversity declines at the spatial scales at which conservation actions and policies 
are implemented.

Modelling past changes in agricultural land. To understand past drivers of change 
in agricultural land, we applied a two-stage modelling process to each 1.5 × 1.5 km 
terrestrial cell on Earth. First, we fitted a multinomial regression to estimate the 
probability a cell experienced a change in the proportion of agricultural land 
during a five-year period. Second, we fitted generalized linear models (GLMs) to 
estimate the magnitude of this change. We fitted separate models for cropland and 
pastureland because of differences in the relative importance of factors influencing 
their dynamics.

Data inputs. Land-cover change is driven by interacting biophysical and 
socioeconomic forces65. We reviewed land-cover change literature to identify 
potential drivers of agricultural expansion and included those for which global 
data were available at appropriate spatial resolutions. We therefore included in our 
models: extent of surrounding agricultural land, historical changes in agricultural 
land, agro-ecological suitability (AES), travel time to large cities (>50,000 people; 
as a proxy for market access) and the presence of a protected area in a cell65–72.  
See Supplementary Information for more detail and data sources.

We resampled all data to a 1.5 × 1.5 km Mollweide projection using the 
resample function in the raster package73 in R74. Note that AES was originally at a 
lower resolution20 (Supplementary Table 4), adding a degree of uncertainty to our 
projections (Supplementary Information provides details). All other input data 
were originally at a higher resolution.

Model fitting. We fitted region-specific multinomial regressions to estimate the 
probability that each cell experienced a change in cropland or pastureland extent 
and then used GLMs to estimate the magnitude of this change. Because drivers of 
cropland and pastureland expansion differ by region (Supplementary Data 3–6),  
we fitted separate models for each IUCN region75 and for cropland and pastureland.

We a priori included the same explanatory variables for all models (although 
Supplementary Table 4 provides differences between cropland and pastureland 
models) and used cell-specific values for each explanatory variable.

Examining univariate relationships between explanatory and response  
variables showed nonlinear relationships for some variables. We therefore 
log-transformed travel time and included quadratic effects for all variables except 
AES and presence/absence of a protected area. We also included country as a 
fixed effect in the model because differences in country-specific laws, policies and 
demand for agricultural land affect the spatial pattern of cropland expansion.  
See Supplementary Information for more information on model fitting.

Probability of change in agricultural extent. Our first response variable was 
whether the proportion of cropland or pastureland in a cell increased, decreased, 
or remained constant from 2007 to 2012. To account for uncertainty in MODIS 
data, we classified cells as having a constant agricultural extent if the proportion 
of a cell under agricultural land cover changed by less than 0.025 from 2007 to 
2012. We then used the R package nnet76 to fit a multinomial regression model to 

estimate the probability a cell increased, decreased, or did not change in cropland 
or pastureland extent from 2007 to 2012.

Magnitude of change in agricultural extent. Our second response variable was the 
magnitude of agricultural land-cover change in a cell. We fitted separate GLMs 
to cells that experienced increases in agricultural land and those that experienced 
decreases. This resulted in three GLMs for each IUCN region: cropland increases, 
cropland decreases, and pastureland increases. We did not fit models for pastureland 
decreases because we assume pastureland extent remains constant in each country. 
We fitted models using the glm function in the stats package in R74, with a gamma 
error distribution and a log link function to bound estimates between 0 and 1.

Modelling results and accuracy. Model coefficients and accuracies are shown 
in Supplementary Table 5 and Supplementary Data 3–6. See Supplementary 
Information for more details on model testing, results and accuracy.

Testing model accuracy for probability of change in agricultural extent. We assessed 
model accuracy by classifying cells as having expanded or contracted from 2007 to 
2012 based on the cell’s most probable modelled outcome. We then compared these 
classifications with actual changes over 2007–2012.

Model accuracy varied across regions, ranging from ~62.5% (Caribbean) to 
~95% (North Africa) for cropland and 59% (Oceania) to 77% (South and Southeast 
Asia) (Supplementary Table 5) for pastureland. This compares with a 33% chance 
of randomly selecting the correct outcome. The lower accuracy of pastureland 
predictions is possibly due to MODIS data not differentiating between natural 
grasslands or savannahs and artificial pastures21.

Projecting agricultural land-cover change. We estimated the probability and 
magnitude of future agricultural land-cover change for every cell using the 
coefficients from the fitted models. We extracted land-cover data from MODIS for 
2005 (estimated as the mean of 2004–2006) and 2010 (mean of 2009–2011), using 
2010 as a baseline for our projections and calculating the change from 2005 to 2010 
as an explanatory variable. We used the region-specific multinomial models to 
estimate the probability that each cell would experience an increase or decrease in 
cropland, then estimated the magnitude of these increases or decreases using the 
GLMs. See Supplementary Information for more detail.

Cropland expansion. To project future agricultural land cover, we then linked 
these estimated probabilities and magnitudes of land-cover change from the 
land-allocation model with the agricultural land demand estimated from the 
land-demand model (Supplementary Fig. 1).

For countries with a projected increase in cropland demand, we randomly 
selected a single cell based on the probability it would experience an increase in 
cropland extent (that is, the output from the region-specific multinomial model), 
then increased the proportion of cropland in the chosen cell by the cell-specific 
amount estimated from the GLMs for cropland increases. We updated the 
estimates from both parts of the model (because the area of cropland is a key 
predictor), reduced the country’s five-year agricultural land demand target by the 
amount of expansion estimated for the cell, and repeated the process until the 
country’s five-year target for cropland was met.

For countries projected to see a decrease in cropland, we used the same 
procedure but using the probability of cells experiencing a decrease in cropland 
from the multinomial model and the estimated magnitude of this decrease from 
the GLMs for cropland decreases.

Changes in pastureland. Following recent trends in global pastureland61,77 and 
the EAT-Lancet projections, we did not project changes in countries’ areas of 
pastureland. However, we did allow cropland to expand into pastureland. This 
displaced pastureland was then reallocated within the country using the allocation 
process described above for crops, but using the region-specific models for 
pastureland, and additionally assuming pastureland cannot expand into cropland. 
To avoid overestimating future pastureland extent, we limit pastureland expansion 
to cells identified as containing livestock by Gridded Livestock of the World78 in 
2010. If pastureland extent could not expand adequately to meet the five-year 
target, we assumed that shortfalls were compensated by livestock intensification5,79.

Adjusting probabilities and the magnitude of changes. Agriculture cannot expand 
into all regions and land-cover classes, specifically into regions with very low 
growing degree days, and urban, rock and ice, barren ground and water land-cover 
classes. We therefore assumed that agriculture could not expand into certain cells 
based on their land-cover type and climatic conditions, and further capped the 
potential amount of agricultural land based on the proportion of each cell that is 
suitable for agriculture. See ‘Input data for models’ and ‘Adjusting probabilities and 
the magnitude of changes’ in Supplementary Methods for details.

Consistency of projections. Because the land allocation model is probabilistic,  
we repeated it 25 times, calculating the mean and s.d. of the extent of cropland  
and pastureland in each cell for each five-year period. The allocation model 
produced consistent projections (Supplementary Fig. 3) and we therefore use  
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the mean value in our analyses. The median global coefficient of variation  
(s.d./mean) in 2050 was 0.26 for cropland and <0.001 for pastureland 
(Supplementary Fig. 4), indicating variation in agricultural extent was small 
relative to estimated mean agricultural extent.

Potential impacts of climate change on agricultural land. We did not include the 
potential impact of climate change on AES or agricultural yields in our models. 
Doing so would be hampered by a lack of consensus of how climate change 
might affect AES and crop yields, and would rely on a large number of untestable 
assumptions of farmer and policy responses to environmental change. However, 
the flexibility and adaptability of our approach allows for the easy inclusion of 
climate change impacts in the future. This can be done by adjusting future yield 
projections based on local conditions and adaptive capabilities, or by adjusting 
future AES to capture how changing climates might affect the relative suitability of 
different regions. See Supplementary Information for a longer discussion of how 
climate change might affect future patterns of agricultural land-cover change.

Biodiversity model. AOH in 2010. Maps of suitable habitat (referred to as AOH24) 
were produced for 4,003 amphibians, 10,895 birds and 4,961 mammal species24–27. 
These maps were originally developed at 300 × 300 m resolution through deductive 
habitat-suitability models integrating species’ ranges with data on suitable land 
cover and elevations24. These habitat models reliably predict species distribution 
over wide geographical and taxonomic extents at the 1 km resolution26,27. 
Supplementary Fig. 9 shows the species richness patterns created from the  
AOH maps.

Species’ habitat tolerances. We used IUCN data to define whether species can 
survive on agricultural land4. For each species, we recorded if habitats were 
‘suitable’ or ‘marginal’ and took the maximum value of all habitats that qualify as 
either cropland or pastureland. That is, if a species has ‘arable land’ as ‘marginal’ 
and ‘plantations’ as ‘suitable’, we defined cropland as ‘suitable’ for the species. See 
Supplementary Information for a longer discussion on species’ habitat tolerances.

Current AOH. We next estimated the global area of suitable habitat for each species 
in 2010. We first calculated the overlap between each species’ suitable habitat and 
current cropland and pastureland (from MODIS data) and subtracted the area of 
agricultural land from the habitat maps, adjusting for the suitability of cropland or 
pastureland: we assigned ‘suitable’, ‘marginal’ and ‘unsuitable’ habitats a value of  
0, 0.5 and 1, respectively, and multiplied this value by the overlap between habitat 
and agriculture in each cell. Thus, the value in each cell indicates the proportion of 
the cell suitable for a species. We then summed this value across all cells to estimate 
of area of suitable habitat in 2010. See Supplementary Information for more detail 
on how current AOH was calculated.

Biodiversity projections. We estimated future changes in the 2010 AOH for 
19,859 species of terrestrial amphibians, birds and mammals, repeating the process 
described above for each five-year period from 2010 to 2050. We assumed species 
were unable to recolonize areas where agricultural land was abandoned to provide 
conservative estimates of biodiversity gains from agricultural abandonment. Altering 
this assumption such that species are able to colonize abandoned agricultural areas 
(as is often observed in long-term dynamics80) has little overall impact on our 
results. With recolonization allowed, 17.8% of species were projected to see their 
AOH increase, compared with 6.1% without recolonization, and the mean change in 
habitat area for these species increased from 1.2% to 2.2% (Supplementary Data 1).  
Across all species, mean changes were even smaller, from a mean loss of 5.8% 
without recolonization changing to a mean loss of 5.3% with recolonization. Species 
for which agricultural land is suitable could see increases in AOH as cropland and 
pastureland expand, or as pastureland is converted into cropland.

Projecting changes under alternative scenarios. We repeated the process above for 
each of the five alternative scenarios and calculated both the absolute changes in 
habitat area as well as the difference between business-as-usual and the alternatives.

Data availability
Data are available at https://doi.org/10.5061/dryad.jq2bvq87m and from the 
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