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The Price of Immediacy
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ABSTRACT

This paper models transaction costs as the rents that a monopolistic market maker
extracts from impatient investors who trade via limit orders. We show that limit orders
are American options. The limit prices inducing immediate execution of the order are
functionally equivalent to bid and ask prices and can be solved for various transaction
sizes to characterize the market maker’s entire supply curve. We find considerable
empirical support for the model’s predictions in the cross-section of NYSE firms. The
model produces unbiased, out-of-sample forecasts of abnormal returns for firms added
to the S&P 500 index.

CAPITAL MARKET TRANSACTIONS essentially bundle a primary transaction for the
underlying security with a secondary transaction for immediacy. From this
perspective, the price of immediacy explains the wedge between transaction
prices and fundamental value and therefore represents a cost of transacting.
Despite widespread interest among investors and corporations alike, a useful
characterization of transaction prices has been elusive. This paper addresses
this challenge by developing a parsimonious model of the market for immediacy
in capital market transactions that yields an analytically tractable quantity
structure of immediacy prices.

An inherent friction that limits liquidity in capital markets is the asyn-
chronous arrival of buyers and sellers, each demanding relatively quick trans-
actions. Grossman and Miller (1988) argue that the demand for immediacy in
capital markets is both urgent and sustained, creating a role for an interme-
diary or market maker, who supplies immediacy by standing ready to transact
when order imbalances arise (Demsetz (1968)).! In this setting, the price of
immediacy is determined by two factors: (1) the costs of market making and (2)
the extent of competition among market makers.

Many models assume perfect competition in market making. In this set-
ting, the price of immediacy is determined as the marginal cost of supplying
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with Harvard University and Harvard Business School, and Stafford is with Harvard Business
School. This paper has previously been circulated under the title, “Pricing Liquidity: The Quantity
Structure of Immediacy Prices.” We thank John Campbell, Joshua Coval, Will Goetzmann, Robin
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! Empirical evidence on order submission strategies generally supports this view (e.g., Bacidore,
Battalio, and Jennings (2003), Werner (2003), He, Odders-White, and Ready (2006)).
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immediacy. A large literature explores, the nature of these costs, focusing on
the market maker’s cost of holding inventory (see, e.g., Garman (1976), Stoll
(1978), Amihud and Mendelson (1980), and Ho and Stoll (1981)) and the costs
of adverse selection in market making, which arise when investors have access
to information that is not yet reflected in the price.?

Abstracting from the costs of market making, we instead relax the assump-
tion of perfect competition. Specifically, we study how the asynchronous arrivals
of buyers and sellers grant the market maker transitory pricing power with
respect to investors demanding immediate execution. In this sense, our frame-
work is similar to the market structure in the search-based model of Duffie,
Garleanu, and Pedersen (2005), where all agents are symmetrically informed
and market makers have no inventory risk because of perfect interdealer mar-
kets. This makes market making costless. However, because investors must
search for viable trading counterparties, the market maker is able to extract
some of the difference between investors’ reservation values and fundamen-
tal value in exchange for providing immediacy, giving rise to a bid-ask spread.
We focus on the particular case in which a single market maker is continually
present, and the investor is impatient. This setup effectively creates a mar-
ket for immediacy operating around the determination of fundamental value,
which is assumed to occur in a separate market.

Both the costly market making literature and the search literature focus on
developing equilibrium models. In contrast, we develop a partial equilibrium
model of transactions in the market for immediacy, which results in explicit
formulas for the price of immediacy. We study an impatient investor seeking
to transact @ units of a security. The investor trades via a stylized limit order.
In the spirit of individual portfolio choice problems, we assume that the funda-
mental value process and the arrival of other investors are unaffected by the
individual’s trading decisions. Similar to Duffie et al. (2005), we assume im-
perfect competition in market making. In particular, we allow a single market
maker to have exclusive rights to be continually present in the market for the
security. The privileged position of the market maker, combined with the asyn-
chronous arrival of immediacy-demanding buyers and sellers, gives him some
pricing power in setting transaction prices (or immediacy prices). The degree
of pricing power is determined by the intensity of opposing order arrivals and
as in perfect competition, collapses to zero when arrival rates are infinite.

To develop an analytical model of transaction prices, we exploit the fact that
a request to transact via a limit order is essentially equivalent to writing an
American option.? For example, consider a seller placing a limit order. The
seller can be viewed as offering the right to buy at a specific price at some point

2 Bagehot (1971) was one of the first to consider the role of information in determining transaction
costs in a capital market setting. Copeland and Galai (1983), Glosten and Milgrom (1985), and Kyle
(1985) are important early models of the information component of transaction costs. See O'Hara
(2004) for an overview of these models.

3 The notion that limit orders can be viewed as contingent claims is not new (see Copeland and
Galai (1983) for a specific option-based model of prices bid and asked by a market maker, and
Harris (2003) for general examples).
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Figure 1. The price of immediacy. This figure illustrates the relationship between transac-
tion prices and the fundamental value in two capital markets. In a perfect capital market, all
transactions—independent of quantity demanded—take place at the fundamental value, V;. In an
imperfect capital market, where the market maker has pricing power, transaction prices, K*(@, 1),
diverge from fundamental value and depend on the size of the transaction, @, relative to the share
arrival rate, ». The wedge between fundamental value and the transaction price represents the
price of immediacy.

prior to an expiration date. This is effectively an American call option, requiring
delivery of the underlying block of shares upon execution. Similarly, a request to
buy is like an American put option. To ensure immediate execution, the initiator
of atransaction offer (the option writer) must offer a price at which it is currently
optimal for the receiver of the transaction offer (the option owner) to exercise the
option early. The strike prices, where immediate exercise is optimal, represent
immediately transactable prices and therefore are functionally equivalent to
the market maker’s bid and ask prices.

The resulting formula for the price of immediacy is simple and intuitive and
can be simplified even further when the arrival rate of order flow is large
relative to the riskfree rate. Figure 1 illustrates how the price of immediacy
reflects the wedge between transaction prices and fundamental value for vari-
ous transaction sizes. The approximate formula for the percentage transaction
cost is simply the product of volatility and the square root of excess demand,

(@)~ o,/ %, where o is the volatility of fundamental value, @ is the transac-
tion size, and A is the arrival rate of opposing order flow. The model predicts

that bid—ask spreads are increasing in the volatility of fundamental value and
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in the size of order imbalances, (%). Larger transactions effectively require the
immediacy demander to write longer maturity options, which translates into
greater transaction costs. Additionally, when order flow arrives at an infinite
rate, the monopolist market maker’s pricing power collapses and the price of
immediacy is zero for all quantities. Finally, the model predicts that the price
of immediacy is a concave function of the transaction size, which empirical
evidence strongly supports.

An attractive feature of the model is that it delivers a formula for immediacy
prices as a function of variables that can be estimated relatively easily, allowing
us to test its performance in a variety of settings. In the first application, we use
the model to predict the discount charged to the Amaranth Advisors hedge fund
during the forced liquidation of its portfolio. We find that our model’s estimate
of a 35% charge for immediacy compares favorably with the $1.4 billion loss
incurred by the fund, which represented a 30% discount relative to the previous
day’s closing net asset value. In the second application, we use trade and quote
(TAQ) data to fit our model to the quantity cross-section of transactions for
NYSE firms. This calibration exercise demonstrates how the model can be used
to estimate the entire, generally unobserved, quantity structure of transaction
costs for individual securities, including very large transactions like corporate
issues and takeovers. To evaluate the performance of the calibration procedure,
we then use the calibrated quantity structure of immediacy prices to predict the
price reactions for a sample of firms when they are added to the S&P 500 index.
The out-of-sample nature of this test is underscored by the fact that, on average,
the volume of shares bought by indexers during the inclusion event is over 300
times greater than the largest transaction used to calibrate the model. We find
that the limit order model produces unbiased estimates of price impact in this
situation and is able to explain roughly three times more of the cross-sectional
variation than other models previously reported in the literature.

The remainder of the paper is organized as follows. Section I describes the
model. Section II discusses the properties of the quantity structure of imme-
diacy prices. Section III explores the limit order placement of a patient trader.
Section IV proposes two methods for implementing the model and empirically
evaluates the model’s performance. Finally, Section V concludes the paper.

I. The Pricing of Limit Orders

A common feature of transaction offers across many markets is that they pre-
specify price and quantity and remain available for some potentially unknown
amount of time. In financial markets, these offers are referred to as limit or-
ders. So long as the value of the underlying asset can change over the life of
the offer, viewing offers of this type as options is reasonable. The value of this
option is naturally interpretable as a cost of transacting, since it represents the
value forgone to obtain the desired execution terms. In particular, a limit order
to sell (buy) @ shares at price K gives arriving buyers (sellers) the right to pur-
chase (sell) at a pre-specified limit price at some point prior to the expiration
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date of the limit order and is therefore like an American call (put) option with
the @-share block of the security acting as the underlying. By placing a limit
order, the trade initiator can be viewed as surrendering an American call (put)
option on the desired quantity of the underlying to the remaining market par-
ticipants. Although the offer is potentially available to many counterparties,
it is extinguished as soon as anyone exercises it or upon maturity. The option
writer receives liquidity when the limit order is exercised. From the perspec-
tive of someone evaluating whether or not to exercise the option, the important
considerations are the individual’s own liquidity demands and the potential for
competition from other market participants.

The value of the limit order and its optimal exercise policy depend crucially on
three factors: (1) the mechanism governing trading (market structure); (2) the
arrival rate of shares eligible for execution against the order (market competi-
tion); and (3) the evolution of the fundamental value of the underlying security
or basket of securities. Because these factors are likely to have complex dynam-
ics in reality, our model is best interpreted as a reduced-form characterization
of transaction costs.

The challenge is to specify a suitable market structure that allows the de-
mand and supply of immediacy to be isolated. Generally, each party to a trade
is both demanding and supplying immediacy to some extent. To simplify, we
assume that the limit order writer (the trade initiator) is impatient and de-
mands immediate execution. To have the limit order filled instantaneously, he
must write an option that is sufficiently deep in-the-money to make immediate
exercise optimal. Although the option is available to both the market maker
and opposing order flow, only the market maker can be relied upon to supply
immediacy at any given time because order flow arrives stochastically. For the
market maker, the threat of losing the order to opposing order flow acts like a
stochastic dividend on the underlying block of shares, creating an incentive for
the market maker to exercise the option early.

An attractive feature of this setup is that limit prices for which immediate
exercise is optimal, represent instantaneously transactable prices and there-
fore are functionally equivalent to the market maker’s bid and ask prices. This
allows us to characterize the generally unobserved bid and ask prices for large
quantities (i.e., larger than the quantity posted at the best bid and ask). More-
over, the option-based model of transaction prices inherits the properties of
ordinary options. The two drivers of transaction costs for any given quantity
are the asset’s fundamental volatility and the effective option maturity, which
is determined by the order flow arrival rate. A quantity structure of instanta-
neously transactable prices arises because larger trade sizes require the trade
initiator to write options with longer effective maturities.

A. A Simple Model of Transaction Costs

Our model of transaction costs adopts a partial equilibrium framework sim-
ilar in spirit to the one used for studying individual portfolio choice (Merton
(1969, 1971)), in which the process for the asset’s fundamental value is specified
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exogenously. We then focus on characterizing the determinants of the wedge be-
tween transaction prices and fundamental value, or equivalently, transaction
costs. The separation of the determinants of fundamental value and liquid-
ity costs present in our model is consistent with the conclusions of Cochrane’s
(2005 p.5) survey of the liquidity literature, where he suggests that liquidity
be interpreted “as an additional feature above and beyond the usual picture
of returns driven by the macroeconomic state variables familiar from the fric-
tionless view.” By providing a theoretical model of the “level” of transaction
prices, we naturally complement the existing literature examining the effects
of liquidity risk on the determination of expected “rates” of return (Pastor and
Stambaugh (2003), Acharya and Pedersen (2005)).

The market for a security is composed of two symmetrically informed agent
types: investors and a market maker. The profit-maximizing market maker
acts as an intermediary, facilitating trades between asynchronously arriving
investors, effectively creating a market for immediacy. However, unlike the
individual investors, the market maker is assumed to additionally have contin-
uous access to an interdealer market as in Duffie et al. (2005), such that he can
instantaneously hedge his inventory risk. Trading in the interdealer market
is frictionless and takes place at fundamental value, V;, which is observable
by all participants. The dynamics for fundamental value are described by the
diffusion-type stochastic process:

e pdt +odz,, W

t

where 1 and o2 are the instantaneous expected return and variance of the
fundamental value, respectively, and dZ; is a standard Gauss—Wiener process.*
The price formation process giving rise to fundamental value, V;, pins down the
price of risk, yv, for exposure to the shocks dZ; and implies a pricing kernel of
the form

d A,

t

— —rdt — yy dZ,, 2)

where r is the instantaneous riskless rate and yy = % If markets are incom-
plete, this pricing kernel will not be the unique kernel of the economy, but it will
be the unique kernel in the span of dZ;, allowing us to price any asset whose
value is exposed only to innovations in dZ;.

The inability of individual investors to participate in the market for fun-
damental value creates the scope for the market maker to provide liquidity
services to the public and collect compensation in the form of a bid—ask spread.
Although investors do not have access to the interdealer market, they can still
trade with each other at fundamental value when opposing orders are present.

4 Although the process for fundamental value is specified exogenously, it can be naturally in-
terpreted as the outcome of a rational expectations equilibrium arising in the interdealer market
(Wang (1993), He and Wang (1995)).
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Only in the absence of opposing order flow are they forced to submit limit or-
ders to the market maker, who will buy (sell) the security at some discount
(premium).® Providing a useful characterization of the wedge between funda-
mental value and the prices at which the market maker is willing to transact
@ units of a security is the central goal of our investigation. To determine this
wedge, we first provide a more detailed specification of the mechanism by which
limit orders are exercised.

DEeFINITION 1 (Trading Mechanism): A limit order, L'(Q, K), specifies a quantity,
price, and direction of trade (i.e., buy or sell, i € {B, S}).

1. Limit orders can be exercised by the market maker at any time prior to the
occurrence of an opposing Q-share order imbalance. Upon the occurrence
of an opposing Q-share order imbalance, the limit order transacts with
the order imbalance at the (then current) fundamental value, voiding the
market maker’s claim on the trade.

2. The instantaneous probability of observing a Q-share buy (sell) imbalance
during the next instant is given by AB(Q)dt (\5(Q)dt). Given this assump-
tion, the expected time to the completion of a Q-share limit order to sell
(buy) is distributed exponentially with mean #Q) (ﬁQ)).6

To preserve tractability and abstract from modeling the evolution of the limit

order book, we focus on the special case in which all limit order traders have
zero patience and hence only place orders that are immediately exercisable by
a profit-maximizing market maker.” To obtain immediacy, an impatient limit
order trader must set the limit price, K, such that the option embedded in the
order is sufficiently in-the-money to make immediate exercise optimal. In gen-
eral, the schedule of limit prices guaranteeing immediacy will depend on the
factors determining the value of the option: the riskless rate, r; the volatility of
the underlying, o; and the arrival rate of opposing order flow, A/(-), which itself
is a function of the order quantity, @. We denote the schedules of immediacy
prices for @-share sell and buy limit orders by Kg(Q, @ = 0) and KA(Q, a = 0),
respectively, with the spreads between fundamental value and these prices hav-
ing the interpretation of the “price of immediacy”.® These schedules represent
prices at which transactions can take place instantaneously and are function-
ally equivalent to bid and ask prices.

5 We require agents to submit limit orders, as opposed to market orders, to prevent the market
maker from exploiting his instantaneous pricing power and filling sell (buy) market orders at a
zero (infinite) price. In practice, this form of exploitation is precluded by legal restrictions and
reputational considerations.

6 The A parameters can be interpreted alternatively as “search intensities” for eligible counter-
parties, in the spirit of Duffie et al. (2005) or Vayanos and Wang (2007).

7 Grossman and Miller (1988) argue that there is high demand for immediacy in capital markets.
Empirical evidence supports this view. Bacidore et al. (2003) and Werner (2003) report that between
37% and 47% of all orders submitted on the NYSE are liquidity demanding orders, comprised of
market orders or marketable limit orders.

8 The investor’s patience level, a = 0, is included to emphasize that immediacy is being de-
manded.
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ProrosiTiON 1: The strike price at which it is optimal to immediately exercise a
sell (buy) limit order for @ shares determines the effective bid (ask) price for @
shares.

In our baseline specification we assume that limit orders are not subject to
cancellation by the limit order writer. This implies that the limit order option
is “perpetual”, albeit subject to a stochastic liquidating dividend in the form of
order execution by arriving order flow. The main virtues of the perpetual limit
order feature are its analytical tractability and the fact that it provides an upper
bound to immediacy costs. Since the value of the American option implicit in
the limit order is monotonically increasing in time, a limit order writer forced
to trade in perpetual limit orders is effectively surrendering options with the
highest possible time value. Consequently, immediacy costs are maximized.
When we relax this assumption and consider limit orders subject to cancellation
by the limit order writer, we find that the qualitative predictions of the model
are unaltered as long as the expected lifetime of the limit order is non-zero.’

The presence of the liquidating dividend is crucial in that it makes an early
exercise strategy for the monopolist market maker optimal and facilitates the
interpretation of option exercise as liquidity provision. The particular struc-
ture of the dividend process, controlled by a Poisson random variable with a
quantity-dependent arrival intensity, is chosen for analytical tractability. In
particular, the memoryless feature of the interarrival process preserves the
time-stationary feature of the perpetual option valuation problem. This allows
us to intuit that the optimal exercise boundary will be a barrier rule, which
optimally trades off the preservation of the time-value of the option with the
adverse consequences of the dividend.

B. Model Solution

Given the earlier assumptions, Appendix A shows that the value of the
@-share limit order with a strike price K, L(V;, @, K, t), satisfies the following
ordinary differential equation (ODE):

1 )
Lr -rFg.)+ §LFF (oFg:? —(r+1(Q)-L=0, (3)

where subscripts are used to denote partial derivatives and Fg; = Q - V; rep-
resents the fundamental value of the underlying block of shares. This ODE is
solved subject to three boundary conditions. The first boundary condition is
determined by the asymptotic behavior of the value of limit order as a function
of Fg ., and the second pair of conditions arises from the value matching and
smooth pasting at the optimal early exercise threshold. The equidimensional

9In the degenerate case, when the limit order writer can credibly threaten to cancel the order
instantaneously, all transactions take place at fundamental value. The credibility of such threats
can be eliminated through the introduction of a small, fixed cost of order submission, which would
render strategies with instantaneous cancellation infinitely costly.
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structure of the ODE suggests that the solution is a linear combination of power
functions in Fig; with exponents given by:

i (1 1 1\ 20 +2(Q)

Economic intuition allows us to exclude one of the two roots in the case of both
a sell limit order and a buy limit order. In particular, since the value of a sell
(buy) limit order is increasing (decreasing) in Fg ;, we can exclude the negative
(positive) root. Finally, to pin down the value of the constant of integration, we
make use of the fact that the optimal exercise rule for the option is a barrier
rule. Consequently, the value of the limit order at optimal exercise is given by
@ - (V* — K) for a sell limit order and @ - (K — V**) for a buy limit order, where
V* and V** are the optimal exercise thresholds for sell and buy limit orders, re-
spectively. The expressions for the values of the limit orders and the associated
optimal exercise thresholds are collected in the following proposition.

ProrosiTiON 2: The value of a Q-share sell limit order is given by

LS(Vt, Q,Kyt) =

+ (A7)
QK <¢+()\B) -1 Vt)
. L V,<V* 5)
son—1 \a6m K vt
and it is optimal for the market maker to exercise the implicit call option when-

$:(A5)

ever fundamental value reaches the threshold V* = K - ( 70T

) from below.
The value of a @-share buy limit order is given by

Sy $-(15)
QK (¢_(A> 1 Vt) V, > v

B = : 7
L%(V;, Q,K,t) = 1—6 (5 p-05) K

(6)

and it is optimal for the market maker to exercise the implicit put option when-

ever fundamental value reaches the threshold V** = K - (-2=42_ 5 1) from above.

¢ (AS )—
For a proof of these results see Appendix A.

To induce immediate exercise of a sell (buy) limit order, the limit price (i.e.,
the option strike price) has to be set such that the prevailing fundamental
value, V,, is exactly equal to V* (V**), making it optimal for the market maker
to exercise the order instantaneously. To do this, the limit order writer selects
a limit price, K*, which renders the time-value of the embedded option equal to
zero at the prevailing fundamental value, V. The distance, V, — K*, represents
the value of the immediately exercisable option and has the interpretation of
the price of immediacy for a one-share transaction.

The strike prices for immediately executable buy (sell) transactions as a func-
tion of order quantity yield the “quantity structure of immediacy prices.” The
analytical expressions for the immediacy prices depend on the order quantity,
Q, through ¢, (A%) and ¢_(1°) and are summarized below.
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ProposiTion 3: The bid-, Kg(Q, a = 0), and ask-, Kx(Q, a = 0), prices are given
by

o ¢-(0.F) — 1
KB(Q,“—O)—Vt'< 5 GB) ) (7)
KiQ,a=0)=V, $-G7) 1 (8)
A , 0 = — Yt ( ¢_()\‘S) >

and imply that the percentage immediacy costs for sales and purchases are given
by

Kp(Q,aa=0)-V; 1
—_ 9
v, PRI ®
KaQ,a=0)-V, 1
= — . 1
v, 5 05 (10)

The expressions for the proportional transaction costs can be further simpli-
fied by noting that under empirically plausible calibrations, the order arrival
rates, A{(Q), will be significantly larger than the riskless rate. This allows us
to derive some simple approximations for ¢.(-) and the percentage immediacy
costs. In particular, whenever 1/(Q) > r, we have!®

V21(Q)

o

¢+(M) ~ £ 11)
Consequently, the percentage immediacy costs predicted by our model are (ap-
proximately) proportional to (A(Q))~ :—the square root of the expected waiting
time for the arrival of an opposing @-share imbalance—and converge to zero
as the arrival rates of opposing flow tend to infinity, as would be the case in a
perfect capital market. The degree of nonlinearity in the percentage immedi-
acy costs is determined by the relationship governing the scaling of the order
arrival intensity rate as a function of order quantity. For example, if the arrival
rate of @-share imbalances is @" times smaller than the arrival rate of single
share imbalances, the percentage immediacy costs predicted by our model will
be proportional to @ 2. In the remainder of the paper, we focus on the case in
which the expected waiting time for the completion of a @-share order is pre-
cisely @ times larger than the corresponding waiting time for a one-share order
(AYQ) = AX(1) - @1). This implies that the percentage immediacy premium im-
plied by the ask prices will be concave in the order quantity and (approximately)
proportional to /Q.

10 The proposed approximation underestimates (overestimates) the premia (discounts) at which
assets can be bought (sold). The magnitude of this error is extremely small for plausible parameter
values.
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C. Discussion

Before turning to a characterization of the comparative statics of our model
and its predictions under empirically calibrated parameter values, it is worth-
while to briefly reiterate the two key modeling assumptions that allowed us
to obtain a nonlinear quantity structure of transaction prices. First, the limit
order must be interpretable as an option. This requires that the limit order
have a fixed strike price and have the potential to remain outstanding for some
nonzero length of time, allowing fundamental value to change. Second, the mar-
ket must be structured such that the market maker has an “instantaneous”
monopoly on the supply of immediacy and is only forced to compete with order
flow when it is present. Unlike the classical monopolist that is familiar from
deterministic settings, in our stochastic setting, the market maker is perceived
as a monopolist only by counterparties demanding immediacy. This can be seen
more clearly by considering the (expected) number of trading counterparties,
C, available to an agent interested in transacting @ shares in the next t units
of time. This patient agent can transact either with the market maker, who is
always standing by, or with the oncoming order flow, which appears randomly
with a probability depending on the arrival rate of @-share imbalances. Conse-
quently, the number of trading parties perceived by the patient trader is given
by

ElCl=14+(1—e@7) =9 _ @t (12)

As the agent becomes infinitely patient (r — o0), he perceives the market
as being comprised of two trading counterparties, the market maker and on-
coming order flow. As a result of the competition between these two counter-
parties, the agent is assured of transacting at fundamental value.!! On the
other, hand, if the agent demands immediacy (r = 0), he perceives there to be
only one trading counterparty, a monopolistic market maker. More formally,
the market maker can be thought of as having a probabilistic monopoly, since
as T — 0, the expected number of trading counterparties converges to one in
probability.

Under these two assumptions, the market maker is effectively granted own-
ership of the option embedded in the limit order, and has to decide when and
if to exercise the option, which would deliver liquidity to the limit order writer.
The incentive for the early exercise of this option by the market maker arises
as a consequence of the presence of the opposing order flow, which acts like a
stochastic liquidating dividend. To facilitate tractability and generate intuition,
our baseline specification in Section I.A considered a perpetual American option
with a Poisson liquidating dividend. This structure for the liquidating dividend
implicitly assumes that limit orders are only subject to “one-shot execution”—
there is no possibility for a limit order to be filled by a sequence of partial
fills. Although this execution mechanism is simplified, it does have the added

11 Notice that the same result would arise in a model in which two market makers were granted
the right to be perpetually present in the market.
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advantage that the mean interarrival time of opposing orders can be readily
calibrated from empirical signed order flow data.

In Appendix B, we show how to generalize our model to finite-lived limit or-
ders, as well as how to incorporate the possibility of order cancellation by the
limit order writer.!?> While these extensions can be accomplished in closed-form,
similar modifications to the liquidating divided can only be accomplished at the
expense of analytical tractability. Numerical simulations using the Longstaff
and Schwartz (2001) least squares methodology show that the pricing of limit
orders under a more sophisticated order flow process allowing for partial fills
yields results that are qualitatively indistinguishable from those obtained un-
der the analytical model.!?

II. The Quantity Structure of Immediacy Prices

Inelastic demand for immediacy is the limiting case, when patience goes
to zero. The model imposes this condition to identify a quantity structure of
instantaneously transactable prices, that is, immediacy prices. In the model,
the two primary drivers of the prices charged by the market maker are the
volatility of fundamental value and the time rate of arrivals of opposing order
flow. Consistent with intuition, the model predicts that bid—ask spreads are
increasing in fundamental volatility, and that there are economies of scale in
transactions.

To illustrate the above results graphically, we exploit our auxiliary assump-
tion that the expected waiting time for the completion of an order scales linearly
in the order quantity, @.1* Using this assumption, Figure 2 graphs the schedule
of percentage immediacy prices, (9) and (10), as a function of order quantity.
In particular, we assume, the annual volatility of fundamental value is 15% or
35%, the riskfree rate of interest is 5% per year, and orders arrive at a rate
of one share per second. Figure 2 shows that immediacy prices are nonlinear
functions of the transaction size. Using the above definition of the cost of trans-
acting, these costs are increasing and concave in transaction size. This is in
contrast to most information-based models of liquidity, which typically produce
constant marginal costs or linear price functions of quantity (for example, Kyle
(1985)). In Section IV, we evaluate models on the basis of these predictions.

12 A Technical Appendix available for download from the authors’ websites additionally shows
how to analytically incorporate regime switching in fundamental volatility and the arrival rate of
oncoming order flow.

13 The numerical simulation modifies the definition of a limit order to allow partial execution by
order flow and replaces the specification for the market order flow process. Under the augmented
specification used for the numerical simulation the random maturity of the finite-lived limit order
option is determined by the joint dynamics of order imbalance and fundamental value. These
dynamics imply a time-varying instantaneous survival probability for the limit order and lead to a
distribution of the times to completion that is not analytically tractable. In turn, it is not possible to
obtain a closed-form expression for the value of the limit order option or its optimal early exercise
rule, a feature that is shared by most American-type options.

14 We verify the validity of this assumption empirically in the cross-section of NYSE firms in
Sec. V.
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Figure 2. Quantity structure of immediacy prices. This figure illustrates the price of im-
mediacy as a function of order quantity. The price of immediacy is computed as the fraction of
fundamental value that has to be forgone to induce the market maker to execute a limit order
instantaneously. It is plotted against the limit order quantity assuming an arrival rate of one share
per second (A} = 1) and an annualized riskless rate of 5%.

A. Effect of Order Flow Arrival Rates

Demsetz (1968) argues that it is reasonable to expect scale economies in
transactions. As order flow arrival rates for a security increase, the waiting
times for transaction execution in that security decrease. In the limiting case
of infinite arrival rates, waiting times go to zero. In the more typical case of
finite arrivals, the waiting time of a transaction can make up a significant
portion of the total transaction cost. When investors demand immediacy, the
waiting time can be transferred to the market maker (or marginal supplier of
liquidity) who specializes in providing this service, but the waiting time cannot
be eliminated.

The key friction in the model is that order flow arrivals are finite, which gives
rise to positive waiting times for transaction execution. In the model, there is
a direct mapping of waiting time to option maturity. The rate at which oppos-
ing order flow arrives determines the expected waiting time of any given order.
This intuition is formally captured in equations (9) and (10). First and foremost,
as the arrival rate of order flow eligible for execution against the outstanding
limit order, A?, increases, the market maker faces more competition from order
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flow and the percentage immediacy costs decline. In the perfectly liquid mar-
ket, A! — oo, the market maker possesses no pricing power and the costs of
immediacy collapse to zero. Conversely, as competition from exogenous order
flow declines, ! — 0, the market for immediacy becomes progressively less
competitive (more illiquid), allowing the monopolist market maker to charge a
wider bid—ask spread to counterparties seeking immediacy. When trading by
other market participants ceases altogether, A’ = 0, the market maker is the
sole provider of immediacy over time, not just instantaneously, and the asset
market breaks down completely. The value of the sell limit order converges to
the value of the underlying, V;, implying that to obtain immediacy, the seller
must part with the asset at a zero price. Intuitively, in this scenario the market
is a pure monopoly in which the market maker captures the entire surplus. On
the other hand, buy transactions still remain possible, but only at significant
premia to fundamental value. In the limiting case when A’ = 0, the smallest
percentage premium to fundamental value guaranteeing immediate execution
is given by ‘z’—j

Figure 3 displays the immediacy prices for fixed transaction sizes as a func-
tion of the order arrival rate. In general, immediacy prices do not equal fun-
damental value. As order flow arrival rates increase, expected waiting times
shrink, and the bid and ask prices converge toward fundamental value. The
increase in efficiency is largest when arrival rates begin low and increase. The
figure shows that a changing rate of convergence in immediacy prices toward
fundamental value-convergence is initially very fast at low arrival rates, then
becomes more gradual as arrival rates increase.

B. Effect of Fundamental Volatility

In our model, for any given quantity, immediacy prices offered by the market
maker deviate further from fundamental value as the volatility of fundamental
value increases (an illustration is presented in Figure 2). This is a direct conse-
quence of the option-based approach. Option values are increasing in volatility,
and this property flows through to the strike price at which immediate exercise
is optimal. The more valuable the option, the larger the distance must be be-
tween the strike price and fundamental value for the market maker to exercise
immediately. In particular, in the limit as ¢ — oo, the value of a @-share sell
limit order with a limit price of K approaches @ times the fundamental value.
A similar buy limit order approaches @ times the limit price. Because imme-
diate exercise requires that the limit order writer give the market maker an
option that is in-the-money, the percentage immediacy cost for sell orders goes
to 100%. Buy limit orders, on the other hand, are never executed. Conversely, in
the absence of any price risk, that is when the volatility of fundamental value is
zero (o = 0), the options implicit in the order flow have no value, so no premium
is required to induce the market maker to exercise immediately.

C. Liquidity Events

The analytical model presented in Section I allows us to examine how
shocks to the arrival rate of buy/sell orders and the fundamental value of the



The Price of Immediacy 1267

100 T T T T T T T
Ask Price (Q = 10,000)
~~~~~ Ask Price (Q = 1,000)
_ — Bid Price (Q = 10,000)
é 50 Bid Price (Q = 1,000) []
>
[}
8
8 .................
8 ok T T T e
E
ks
(0]
k)
a -50f E
_1 OO 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4
Order arrival rate [shares/sec] - log 10 scale
12,500 ,,,, T T T T T
L Ask Price (Q = 10,000)
10,000 R N R Ask Price (Q = 1,000) []
_ ‘ — Bid Price (Q = 10,000)
é Bid Price (Q = 1,000)
= 5,000 7
[&]
8
el
(0]
1S
E or
kS
[0}
Q
Q- 5,000
~10,000 — . ; ' : ,
) -7 -6 -5 -4 -3 -2 -1 0

Order arrival rate [shares/sec] - log 10 scale

Figure 3. Immediacy prices as a function of the order arrival rate. The figure depicts the
price of immediacy for a buy (sell) transaction for @ = 1,000 (@ = 10,000) shares as a function of
the order arrival rate. The x-axis plots the base 10 logarithm of the share arrival rate AS(A5B) for
sells (buys). The annualized fundamental volatility equals 35%, and the annualized riskless rate
is fixed at 5%.

underlying may compound during a liquidity crisis to affect immediacy prices.
The arrival rate of buy (sell) orders will determine the expected maturity of the
options written by a seller (buyer) demanding immediacy. Therefore, from the
seller’s (buyer’s) perspective, a liquidity crisis is likely to involve a significant
decrease in the current rate of buy (sell) order arrivals relative to the equi-
librium rate. This asymmetry in arrival rates may become more severe if the
current rate of sell order arrivals also increases. This captures the notion that
a liquidity crisis involves some sort of order imbalance. As a consequence of a
temporary order imbalance, a significant asymmetry in buy and sell immediacy
prices may emerge at all quantities, causing the midpoint of the bid—ask spread
to become a biased estimator of the fundamental value.
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Figure 4. Immediacy prices during liquidity events. The figure depicts the percentage cost of
obtaining immediacy for a buy (sell) transaction—as a function of the demanded quantity—during
a liquidity event. In the base case, buy and sell orders are assumed to arrive at a rate of one share
per second; the riskless rate is fixed at 5% and the volatility of fundamental value is 15%. In the
order imbalance scenario, the intensity of sell (buy) arrivals, AS(A8), increases (decreases) fivefold,
but the volatility of fundamental value remains unchanged. In the liquidity event, the change in
the order arrival intensities is accompanied by an increase in the fundamental volatility from 15%
to 35%.

Figure 4 displays the effects of an order imbalance on the quantity structure
of immediacy prices. In particular, the figure assumes that the current rate
of sell order arrivals increases fivefold whereas the current rate of buy order
arrivals falls by this factor. This represents a major “running for the exit” in
the security. Immediacy prices for buyers become much more elastic, such that
an investor wishing to buy can now immediately transact very large quantities
at a price much closer to fundamental value. However, investors wishing to sell
immediately must pay a large premium, even for relatively small quantities.
In other words, the immediacy prices facing sellers are now less elastic at all
quantities.

Figure 4 also displays immediacy prices in the case in which an order im-
balance coincides with an increase in fundamental volatility. The increased
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volatility offsets the reduced waiting time for buy orders, attenuating the in-
creased elasticity of immediacy ask prices slightly. On the other hand, the
higher volatility further increases the premium for immediacy for sellers, mak-
ing prices even less elastic at all quantities.

ITII. Robustness and Extensions

The market structure considered in this paper is highly stylized with a num-
ber of restrictive assumptions required to arrive at our analytical predictions
for transaction prices. First, the market maker is given monopoly in the right
to “hang around,” while other market participants must take an action and
move on. The only competition the market marker faces with respect to current
demand is from offsetting future orders, which arrive stochastically and play
the role of a liquidating dividend. Consequently, while there is competition in
the supply of immediacy over time, instantaneously, the market maker is a
monopolist. Second, we restrict our attention to the case of traders demanding
immediate execution, which allows us to skirt the difficult task of modeling
the evolution of the limit order book. Although the assumption of inelastic de-
mand is crucial in allowing us to trace out the market maker’s supply function
for immediacy-demanding transactions, it conceals the importance of patience
in determining transaction prices. Finally, our model abstracts from issues re-
garding the costs of market making and asymmetric information, which are at
the center of the microstructure literature.

Relaxing these assumptions is likely to bring the model closer in line with the
true richness of the problem faced by market makers and traders in the real
world. In this section, we examine the robustness of our model’s predictions
with respect to such extensions and suggest directions for future research.

A. Search and Pricing Power in Market Making

The assumption of a monopolistic market maker who enjoys the privileged
position of being a continuously available trading counterparty, plays a central
role in our model. Specifically, this assumption grants ownership of the option
implicit in a limit order to the market maker, allowing us to solve for the op-
tion’s value under the optimal exercise rule. The introduction of a competitive
market-making function would alter the pricing of a limit order through its
early exercise rule. In particular, an individual placing a limit order in this
market structure could expect his limit order to be exercised either by opposing
order flow, as before, or by the market maker any time the intrinsic value of the
option exceeds the marginal cost of the market maker’s adjustment to inven-
tory. The introduction of a competitive market-making function would therefore
modify the early exercise boundary to read V; — K*(@) = mc(Q), necessitating
an explicit characterization of the market maker’s cost function, as is commonly
required in traditional models of market microstructure. Conversely, if the mar-
ket maker is a monopolist, we can determine the price of immediacy through
the optimal exercise policy of the limit order, with no knowledge of the market
maker’s cost function.
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Sidestepping the difficult problem of characterizing the cost of market mak-
ing in terms of unobservable variables like information asymmetries and indi-
vidual preferences requires an alternative friction to generate transaction costs.
We assume imperfect competition in market making, consistent with the notion
that supplying immediacy is sometimes profitable. This brings our model much
closer in spirit to the search literature. In search models, transaction prices
are determined through bilateral bargaining, which makes the markets they
describe inherently uncompetitive. Generally, each party to a trade is both de-
manding and supplying immediacy to some degree. The relative market power
of each party is specified exogenously through bargaining parameters, which
determine the division of surplus between two willing trading counterparties.
We focus on the situation in which a single market maker continuously supplies
immediacy to investors with inelastic immediacy demands.!?

Our decision to examine the price of immediacy in partial equilibrium yields
two advantages over the more general frameworks employed in search models.
First, we are able to consider the pricing of an asset with a stochastic fun-
damental value whereas search models examine transaction prices around a
deterministic fundamental value. The time-varying fundamental value gives
the offer to transact an option-like property. Second, our specification can be
readily calibrated using empirical data and is the first to deliver a usable quan-
tity structure of immediacy prices. Of course, it is important to keep in mind
that our model only studies price determination in a single, stylized transac-
tion with no regard for patience or the potential for interactions between the
determination of fundamental value and transaction prices (O’Hara (2003)).
Consequently, we view our model as describing the “nanostructure” of a mar-
ket transaction, which may be an important component of extensions of search
models to settings with stochastic variation in fundamental value.

B. Patience

In this section, we relax the assumption that each trader demands immedi-
ate execution and offer a reduced-form examination of the effect of patience on
limit price selection. Specifically, we propose an intuitive parameterization for
the agent’s patience level, which nests the special case of zero patience consid-
ered earlier. Of course, in equilibrium, the magnitude of the patience parameter
depends on myriad factors including the trader’s utility function, the opportu-
nity cost of delaying order execution, and actions of other market participants.
Rather than explicitly model each of these factors, we continue in the partial
equilibrium spirit of our earlier analysis and specify the patience parameter
exogenously. We show that the limit buy (sell) prices selected by traders are
monotonically decreasing (increasing) functions of their patience and depend
on properties of the underlying (order arrival rates, drift, volatility, etc.) as
well as the trader’s decision horizon (i.e., frequency with which limit prices

15 Since our model features a single market maker who is continuously present in the market, it
is most similar to the case of the Dulffie et al. (2005) search model with a “fast monopolistic market
maker” discussed in Theorem 3.3.
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are reset). Formally, in a model with a limit order book, these buy (sell) orders
would be below the prevailing ask (bid) prices. However, because there is no
limit order book in our model, the limit prices selected by patient traders are
better thought of as reservation values at which they would be willing to place
an immediacy-demanding limit order.'6

To examine the impact of patience on limit price (reservation value) selection,
we parameterize traders by the probability, «, with which their order fails to be
executed within 7 units of time. Traders with zero patience, who demand imme-
diate execution, are characterized by « = 0; and traders with infinite patience,
who do not mind seeing their order go unexecuted, have an « = 1. Consequently,
we refer to the value of o as the patience level. The value of 7 has the inter-
pretation of a decision horizon and represents the horizon at which it becomes
optimal for a trader to recompute his reservation value (Merton (1987)).

The reservation buy price, K} (@, «, 7), of a trader with a decision horizon, 7,
and patience level, «, is set such that the probability of observing the market
ask price reaching K*(@, «, 7) or lower within 7 units of time is exactly 1 —
a. Intuitively, the more patient the trader is (i.e., the larger the value of ),
the further the reservation buy price will be below the prevailing ask value,
KA(Q, « = 0), guaranteeing immediate execution.!” Using the notation intro-
duced earlier in the paper, we know that the market maker will exercise a buy
limit order with limit price K} (Q, «, ) at time A if and only if

-(15) )
p-(A8)—1)"

To determine the reservation buy price, we make use of the probability distribu-
tion function of the running minimum of a geometric Brownian motion (GBM).
Specifically, the above condition requires that the minimum of the security’s
fundamental value, V;, over the time interval [¢, £ + 7] be less than or equal to

Ki(Q, 0,7 (5 4-0%) ) with probability 1 — a,

Vi = Ki(@, 1) < (13)

¢_(A5)
$-(AS) -1

Using the distribution of the running minimum of a GBM this condition can be
rewritten as

2 K* S
a = d(dq) — exp {% . <,u — %) -In (7‘: . (%))} -d(dg), (15)

where p is the drift in fundamental value and

Prob [mith <Ki(Q,a,1)- ( >,h elt,t+ 1:]] =1—-a (14)

16 Given our model assumptions, if we allowed the patient trader’s order to be the sole outstand-
ing order in the limit order book, it would also be subject to execution by oncoming order flow. In
reality, however, because orders submitted by patient traders are likely to be away from the pre-
vailing market prices, they are unlikely to be the first to be executed by oncoming market orders.
Consequently, we view it as a better approximation to interpret the limit prices selected by patient
traders as their reservation values, rather than the prices of actual submitted orders.

17 The analysis of the reservation sell price is symmetric.
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This implicit characterization of buy reservation values, K (Q, «, 1), nests
our earlier solution for immediacy-demanding trades. To see this, note that
traders demanding no uncertainty about execution (¢« = 0) are characterized
by a reservation value, K} (@, «, 7), equal to the price guaranteeing immediate
execution, K4(Q, @ = 0). In other words, the only way to be certain of execut-
ing a buy transaction is to transact immediately at the prevailing ask price,
regardless of the decision horizon.

In Figure 5, we illustrate the impact of patience on the trader’s reservation
value for the case of two decision horizons. In both cases, we fix the riskless rate
and the drift of the underlying asset at 5% and 12% per annum, respectively.
Consistent with intuition, the figure indicates that investors who are more pa-
tient, and thus more willing to absorb uncertainty about execution (larger value
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Figure 5. Reservation values for patient traders. This figure graphs the reservation value
of a patient trader seeking to acquire 10,000 shares of a security with an order arrival rate of 100
shares per second, as a function of the trader’s patience. The reservation value is expressed as a
premium/discount relative to the prevailing fundamental value, V. Patience, «, is parameterized
by the probability of not being executed within the decision horizon 7. The decision horizon is fixed
at 100 (1,000) seconds in the left-hand (right-hand) panel. Each plot considers two values of the
underlying’s volatility. The annualized riskless rate and drift of the security are fixed at 5% and
12%, respectively.
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of «) or having longer decision horizons (larger t), can obtain meaningful sav-
ings relative to impatient traders. For example, consider a trader demand-
ing a 50% probability of having a 10,000-share buy order executed within 100
(1,000) seconds, given an arrival rate of 100 shares per second, when the un-
derlying has a annualized volatility of 25%. While the reservation value of the
trader with a 100-second horizon is roughly equal to the prevailing fundamen-
tal value, the reservation value of the trader with a 1,000 second horizon is 15
buys per second lower. By comparison, a trader demanding immediate execu-
tion would have to submit an order that is 7 basis points above fundamental
value.

IV. Applications

This section considers two types of applications for the model introduced
in Section I and examines the resulting model-based predictions for the price
of immediacy in capital market transactions. In the first application, we test
our model using a real-world scenario in which the impatient demand for a
large transaction by a non-information-motivated trader is met with very little
competition in the supply of liquidity. Under these circumstances, the model’s
extreme assumptions are likely to be valid, allowing us to apply it very literally.
We therefore estimate the parameters of the fundamental value and order flow
processes from observable data and then plug these estimates into the model
to determine the cost for this rare, but important type of transaction. This
application also highlights the potential for our model to be used as a stress-
testing platform for deriving liquidity-adjusted estimates of portfolio losses in
cases of market stress. In the second application, we consider the possibility
that there may be more competition—perhaps in the form of latent liquidity
supply—than the model assumes. In this situation, it is more appropriate to
calibrate the order flow arrival rate parameter using the transaction-level data
generated under ordinary conditions and then evaluate how the model forecasts
out-of-sample transactions.

A. The Forced Liquidation of Amaranth’s Energy Position

As a first example, we examine the collapse of the Amaranth Advisors hedge
fund in September 2006. After sustaining massive losses on its positions in
natural gas contracts, the fund was forced to liquidate its energy book to two
financial institutions at a discount of roughly 30%. Because this asset sale was
both rapid and non-informational, it represents an ideal scenario in which to
test our model’s prediction regarding the price of immediacy.

The Amaranth crisis stemmed from a series of calendar trades on natural gas
contracts placed by the firm. In the U.S., there is insufficient storage capacity
for natural gas to meet peak winter heating demand. As a result, the natural
gas futures market for summer/fall gas contracts and winter gas contracts is
typically in contango, where prices of summer and fall natural gas contracts typ-
ically trade at a discount relative to the winter contracts. The market therefore
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provides a return for purchasing and storing natural gas in the summer and
fall and delivering it in the winter. This incentivizes storage operators to store
more natural gas and sell it in the winter. However, the spread between sum-
mer/fall futures prices and winter futures prices is extremely volatile, so the
storage operator faces a substantial risk.'® Hedge funds, such as Amaranth,
typically sell summer/fall contracts and buy winter contracts, thereby allowing
the storage operators to hedge their risk. Essentially, what energy funds, such
as Amaranth do is provide liquidity for longer-dated contracts, allowing storage
operators to manage longer-dated risks better.

During the weeks of September 11, 2006 and September 18, 2006 the
spread between summer/fall contracts and winter contracts for delivery in 2007
through 2011 narrowed considerably. On some of these days the decrease in the
spread represented a multiple standard deviation event relative to how these
spreads had moved in the past. Because Amaranth was essentially long these
spreads (selling fall/summer contracts and buying winter contracts), it suffered
substantial losses. Moreover, Amaranth was also long winter contracts, which
were hedged with short spring contracts—again for delivery in 2007 through
2011—and these spreads decreased substantially too (Burton and Strasburg
(2006), Davis (2006)). The fund lost approximately $560 million on September
14 alone, and it lost about 35% during the week of September 11" (Burton and
Strasburg (2006), White (2006)).1° Using this information and the decrease in
the calendar spreads during these two time periods,?? we can follow the simple
procedure laid out in Till (2006) to infer that Amaranth held approximately
100,000 total contracts (these contracts were accumulated through trading on
the NYMEX and the ICE). On September 20, all of the energy positions of
Amaranth were transferred to JP Morgan Chase and Citadel Investment Group
in an overnight transaction forced by the fund’s brokers.

To determine the model-predicted discount for this liquidating transaction,
we need to estimate three parameters reflecting market conditions on Septem-
ber 19, 2006: the riskless rate, r; the volatility of fundamental value, o; and
the buy order flow arrival rate, A\®. We estimate the riskless rate to be 4.72%
using the yield on 30-day Treasury bills. The volatility of fundamental value is
estimated to be 95%, which is the implied volatility of 1-month at-the-money
natural gas options. Finally, we estimate the daily buy order arrival rate to be

18In fact, the business of storage can be viewed in real option terms. The value of the storage
facilities is essentially equal to the value of an option on the calendar spread on natural gas. As
the near-term contracts cheapen and the longer-term contracts become more expensive, the value
of storage operators’ facilities becomes more valuable as these operators can buy the near-term
contracts and sell the longer-delivery contracts and realize the value difference via storing natural
gas.

¥ Trincal (2006) estimates that the fund was worth $9.2 billion at the end of August, so a 35%
loss would be approximately $3.2 billion.

20 During the week of September 11*", the winter-spring spread decreased by $31,000 per con-
tract (the contract multiplier for natural gas contracts on the NYMEX is 10,000 MMBtu) while
on September 14" the spread decreased by $6,000 per contract. The summer/fall-winter spread
decreased by $49,000 per contract during the week of September 11*" and by $4,000 per contract
on September 14,
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1,000 contracts based on daily trading volume on NYMEX and ICE. With these
parameter estimates, the model-predicted transaction cost for selling 100,000
contracts is a staggering 34.8%. In reality, the liquidating transaction resulted
in a loss of $1.4 billion relative to the market value of these positions at the end
of September 19 (see Till (2006)), representing an actual discount of 30%.

B. Calibrating the Quantity Structure of Immediacy Prices

An alternative approach to using the model is to calibrate the parameters
to fit an observed relation between transaction costs and transaction sizes. In
this method, the model is used as a device for inferring one of the underlying
parameters, in the same spirit that the Black-Scholes formula is used to “back
out” implied volatility. Given the ease of obtaining accurate proxies for the
riskless rate of interest and the volatility of fundamental value, typically the
parameter of interest is the order arrival rate, A’. By using empirical transaction
data to infer the order arrival rate, we implicitly relax the model’s assumption
of the existence of a single, privileged market marker, which is unlikely to hold
in “normal” times. To “imply out” the order arrival rate one simply matches the
model-predicted immediacy cost to a particular data point, or cross-section of
points, for which one has an ample number of observations, for example, the
cross-section of the most frequently observed order quantities. Then, fixing the
fundamental volatility from the daily return series, one can solve for the implied
order arrival rate and use the analytical structure of the model to generate the
entire unobserved quantity structure of immediacy prices.

B.1. Transaction Costs for NYSE Firms

In this section, we illustrate how our model can be used to generate estimates
of transaction costs—as a function of order quantity—for publicly traded secu-
rities. To calibrate the model, we use transaction-level trade and quote data
(TAQ) for NYSE firms in 2004 as well as daily data on stock returns and U.S.
Treasury bond yields. We proxy the volatility of a firm’s fundamental value
using the standard deviation of its daily stock returns over the year and use
the yield on 1-month Treasury bills as a measure of the prevailing riskfree rate
of interest. Using the quantity cross-section of the realized percentage trans-
action costs, we then imply out the order arrival rate, effectively producing a
transaction cost function for use at the end of the year.

To measure the percentage realized transaction costs, we first need to specify
a measure of fundamental value. Here, we take the standard approach in the
microstructure literature and use the midpoint of the prevailing best bid and
ask quotes as our proxy for fundamental value, V,. We then define the propor-

tional transaction cost as p(@) = P‘V;V’, where P; is the observed transaction

price. This procedure is similar in spirit to the Lee and Ready (1991) tick-signing
algorithm, which is used to classify data into buyer- or seller-initiated trans-
actions. In this classification scheme, trades occurring at prices above (below)



1276 The Journal of Finance

the prevailing midquote are considered to be buyer-initiated (seller-initiated).
At the end of this procedure, we have two data sets for each firm containing
transaction quantity—cost pairs, one for buyer-initiated transactions and one for
seller-initiated transactions. Finally, to attenuate the effect of noise, we require
each unique transaction quantity bucket to contain at least 20 observations
and calibrate our model to the sample mean of the proportional transaction
cost within each quantity bucket. By maximizing a model-fit criterion, we can
then imply out the buy and sell order flow arrival rates that are most consistent
with the structural model.

To ensure that we choose a plausible specification for the scaling order of
the waiting times in quantity, we first examine this relation empirically in the
cross-section of NYSE-listed firms. Specifically, we use signed transaction data
for 2004 to estimate the mean waiting times for cumulative flows of @ shares,
E[7%(®)], and examine their scaling order with respect to quantity by estimating
the following nonlinear least squares regression,

ElZ(@Q)] =ao+a1- Q. (18)

Using our sample of 1,488 firms, we find that the cross-sectional mean estimate
of n is 0.9805 (0.9785) for buys (sells). When we restrict our attention to firms
with concave arrival time scaling, the mean estimate of n is 0.9788 (0.9766)
for buys (sells), suggesting very minute deviations from linearity. The main
concern, however, relates to firms with convex arrival time scaling sufficiently
extreme (n > 2) to offset the concavity of the square root function appearing
in our approximation to the price of immediacy, equation (11). Overall, we find
that no firm delivers a point estimate for n in excess of two, and even when
firms do exhibit convex scaling, departures from linearity are similarly small,
with a mean n estimate of 1.0047 for buys and 1.0099 for sells. In fact, less
than 7% of the firms in the sample exhibit statistically significant and convex
scaling in waiting times. Moreover, because the entire trading record is used
repeatedly to construct the mean interarrival times at various quantity sizes,
the strength and frequency of the rejection of linearity is already likely to be
overstated.

To calibrate the order flow arrival rates, we use a simple linear model based
on the approximate formula (11), combined with the auxiliary assumption of a
constant arrival rate. Under the constant arrival rate assumption, the waiting
times scale linearly in the transaction quantity, %Q) = ﬁ - @, which enables
us to rewrite the percentage transaction cost as

.| e
PQ 0. (19)

Within each quantity category we calculate the average transaction cost, (@),
and the average dollar transaction value, @, based on the median stock price
over the period. Because we measure transaction quantities in terms of dollars,
the value of the order arrival rate implied from our model is in terms of dollars
per unit time. This convention allows us to interpret the measured values as a
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fraction of market capitalization, giving them the flavor of a scale-free turnover
metric.

For each firm with at least 10 quantity categories, we estimate the following
specification:

p(Q)=,30+,31'\/6- (20)

The regressions are estimated using ordinary least squares procedure (OLS)
as well as a weighted least squares procedure (GLS) that weights observations
by the total value of transactions within each quantity category. The order flow

arrival rates are recovered through the equation: A’ = %. Formally, the model

does not suggest the intercept, but any fixed cost Warrar;ts its inclusion.

Figure 6 displays the average quantity structure of immediacy prices for
NYSE firms by size quintile. In addition, the table below the figure summarizes
a variety of characteristics of the underlying firms. Consistent with intuition,
small firms have higher volatility and lower implied order flow arrival rates
than large firms. This translates into considerably larger immediacy prices for
small firms. Our estimates of the fixed cost of transactions are meaningfully
different across the size quintiles and range from 18 bps for the smallest firms
to 2 bps for the largest firms. Figure 6a illustrates that this relation holds
across dollar transaction sizes. On average, the price of immediacy is about
10 times larger for a firm in the smallest quintile of NYSE firms than for a
firm in the largest quintile. Overall, our calibrated order arrival rates imply
annual turnovers of about 20 times market capitalization. We also display the
quantity structure of immediacy prices as functions of the fraction of shares
outstanding (Figure 6b). The calibrated model generates interesting predictions
for more extreme capital market transactions. For example, a cash tender offer
can be thought of as a demand for the instantaneous acquisition of all the
shares outstanding of the target company. The liquidity component of such a
transaction is predicted to be 7.5% on average for a small firm and 4.3% for a
large firm. While actual takeover premia tend to be larger than these estimates,
it is intriguing to consider that a substantial portion of takeover premia may
represent a premium for immediacy.

Finally, our model predicts that immediacy prices are concave in quantity.
We evaluate this prediction by comparing the explanatory power of our limit
order model (square root model) to a linear model suggested by a traditional
microstructure framework. A summary of this analysis is reported in Table 1.
Specifically, we report the average R? by size decile for both the square root and
linear models, as well as the fraction of times that the square root model pro-
duces a larger R2. Overall, the square root model “beats” the linear model 86%
of the time using the order flow arrival rates estimated via OLS and 82% of the
time using the GLS estimates. This suggests that the relation between immedi-
acy price and transaction size is indeed concave, even for moderate transaction
sizes observed on a daily basis. The improvement of the square root model over
the linear model is greatest for the largest firms.



1278 The Journal of Finance

B.2. Estimating the Liquidity Component of S&P 500 Index Inclusions

The real test of any model requires analyzing how it performs out-of-sample.
Consequently, to evaluate the joint effectiveness of the previously described cal-
ibration procedure and our model, we apply the procedure to a sample of firms
that are included in the S&P 500 index and examine how the model’s predicted
transaction costs compare with the actual realized abnormal returns around

Panel A: Immediacy prices as a function of dollar transaction size
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Figure 6. Calibrated quantity structure of immediacy prices for NYSE stocks by size
quintile. This figure displays the price of immediacy as a function of transaction size for NYSE
firms in 2004, grouped by market capitalization quintile. Panel A presents immediacy prices as
a function of dollar transaction size. Panel B presents immediacy prices as a function of fraction
of shares outstanding. For each NYSE firm, the average percentage transaction cost within a
quantity category is regressed on the square root of the average dollar transaction size in that
quantity category. The quantity categories are defined separately for each firm based on the unique
transaction quantities in the 2004 trade and quote data (TAQ) data. The regressions are estimated
via a weighted least squares procedure that weights observations by total dollar value. Market
capitalization is equal to the end-of-year total value of shares outstanding. Volatility is the standard
deviation of daily stock returns. Lambda represents the calibrated order flow arrival rate in $10,000
blocks per second.
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Panel B: Immediacy prices as a function of fraction of shares outstanding

800

700

600

500

400

Transaction cost [bps]

300

200

100

i i i i
0 10 20 30 40 50 60 70 80 90 100
Transaction Value [% of Shares Outstanding]

Median Median Median Avg. Price Avg. Price Avg. Price
Size Market Cap  Stock Price  Median  Lambda Intercept for 10% for 50% for 100%
Quintile [MMS$] [$] Volatility  [$10k/s] [bps] [bps] [bps] [bps]
1 303 15.10 0.37 0.10 18 251 539 755
2 871 26.80 0.30 0.44 6 162 355 499
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Figure 6.—Continued

the inclusion. To get a sense of how extreme this test is, it is worth noting that
on average, the inclusion represents a transaction for 10% of shares outstand-
ing whereas the maximum transaction size in the TAQ data used to calibrate
the model averages only 0.033% of shares outstanding.

Index inclusions are widely recognized as large liquidity events. Harris and
Gurel (1986) and Shleifer (1986) estimate abnormal returns for firms added
to the S&P 500 index to be 3% on the inclusion day.?! Both papers argue that
inclusions to the S&P 500 index convey little new information about future
return distributions, but cause outward shifts in excess demand by investment
strategies that track the S&P 500. Harris and Gurel interpret their findings as
supportive of price pressure (Scholes (1972)) because they find nearly complete
price reversal over a 2-week interval. On the other hand, Shleifer views his
results as evidence of downward-sloping long-run demand curves for securities
because he finds little price reversal. Recently, Wurgler and Zhuravskaya (2002)
test the downward-sloping demand curve hypothesis by classifying firms added

21 More recent inclusions are associated with larger abnormal returns. For our sample covering
1994-2004, the average cumulative abnormal return from announcement to inclusion is 7%.
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Table I
Summary of Transaction Cost Calibration for NYSE Stocks
by Size Decile (2004)

This table reports the average R? from firm-level regressions of percentage transaction costs on dollar
transaction sizes for NYSE firms in 2004, grouped by market capitalization decile. The dependent
variable, p, is the average percentage transaction cost within a quantity category. The independent
variable is either the average dollar transaction size within a quantity category, @, (linear) or the
square root of @ (square root). The quantity categories are defined separately for each firm based
on the unique transaction quantities in the 2004 trade and quote data (TAQ) data. The regressions
are estimated via ordinary least squares procedure (OLS) and a weighted least squares procedure
(GLS) that weights observations by total dollar value rather than the number of transactions in
each quantity category. The fraction of times in which the square root model produces a larger R?
than the linear model is also reported. The regressions are estimated separately for buy and sell
transactions. Buy transactions are identified as those with a transaction price above the midpoint
of prevailing bid and ask prices. The number of observations is denoted by N.

OLS GLS
Limit Order Fraction with Limit Order Fraction with
Size Model Square Root Model Square Root
Decile Linear (Square Root) > Linear Linear (Square Root) > Linear N

Panel A: Buy Transactions

1 0.17 0.18 0.68 0.41 0.43 0.70 136
2 0.21 0.24 0.80 0.65 0.67 0.73 138
3 0.18 0.20 0.76 0.64 0.66 0.69 137
4 0.21 0.23 0.80 0.67 0.69 0.62 137
5 0.18 0.22 0.91 0.69 0.73 0.84 138
6 0.19 0.23 0.92 0.70 0.73 0.84 137
7 0.18 0.23 0.93 0.69 0.74 0.89 137
8 0.15 0.20 0.97 0.67 0.73 0.96 137
9 0.20 0.24 0.93 0.71 0.76 0.93 138
10 0.19 0.24 0.96 0.69 0.76 0.98 137
AIINYSE 0.18 0.22 0.86 0.65 0.69 0.82 1,385
Panel B: Sell Transactions
1 0.26 0.27 0.68 0.50 0.51 0.69 137
2 0.32 0.34 0.79 0.71 0.72 0.72 137
3 0.30 0.34 0.76 0.75 0.77 0.70 138
4 0.31 0.35 0.81 0.76 0.78 0.63 137
5 0.31 0.36 0.90 0.79 0.81 0.83 138
6 0.31 0.36 0.92 0.78 0.80 0.84 138
7 0.28 0.34 0.93 0.77 0.81 0.89 137
8 0.22 0.29 0.97 0.72 0.78 0.96 138
9 0.27 0.33 0.93 0.77 0.82 0.93 137
10 0.23 0.30 0.96 0.74 0.80 0.98 138
AIINYSE 0.28 0.32 0.86 0.73 0.76 0.82 1,388

to the S&P index on the basis of whether they have close substitutes. Consistent
with the hypothesis that excess demand curves slope downward, the inclusion
effect is greater for firms that lack close substitutes, where it is riskier for
arbitrageurs to keep demand curves elastic.
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Given the extreme size of the transactions associated with index inclusions,
explaining the cross-section of abnormal returns around the event poses a
significant challenge, particularly for a structural model. For example, Wur-
gler and Zhuravskaya (2002) carry out a cross-sectional regression of abnormal
returns around index inclusions on the level of arbitrage risk, proxied by resid-
ual variance from a market model regression. Although the level of arbitrage
risk is highly statistically significant, it delivers an R? of only about 0.04. More-
over, their regression model lacks the structure to predict the ex ante liquidity
cost of the index inclusion for individual firms.

We collect a sample of firms added to the S&P 500 index between 1994 and
2004, which requires that TAQ data be available. This results in a sample of
255 firms. For each event firm, we calculate abnormal returns as the residuals
from a one-factor market model. The market model parameters are estimated
over a 150-day window ending 21 days prior to the announcement date using
the value-weighted CRSP index as a proxy for market returns. The individual
firm abnormal stock returns are cumulated (CARs) from the announcement
date to the inclusion date. To estimate the quantity of shares that need to be
purchased by funds indexed to the S&P 500, we use information obtained from
the 2005 Annual Survey of S&P Indexed Assets issued by Standard & Poor’s,
which reports annual estimates of the total value of capital indexed to the S&P
500. Over our sample period, the total value of indexed capital corresponds to
roughly 10% of the market capitalization of the firms in the index. In addition,
from CRSP we collect the market value of the stocks comprising the S&P 500
index and the shares outstanding for the newly added firms at the end of the
month prior to the announcement. Finally, we calibrate the model parameters
for each sample firm using the procedure described in the previous section with
data from the year prior to the announcement.

The analysis involves running cross-sectional regressions of CARs on the
variables predicted by our model to explain the cross-section of price impacts.
In particular, the model predicts that CARs should be positively related to
both volatility and the square root of the ratio of transaction size and the cal-

ibrated order flow arrival rate, \/? . More precisely, the model predicts that

CARs should be proportional to the interaction of these two terms.

Table II reports the results from our cross-sectional regressions. As the model
predicts, both volatility and the square root term are individually, statistically
significant (specifications 1, 2, and 6). Both variables remain statistically sig-
nificant in multiple regressions (specifications 3 and 7). When the interaction
term is used as the single explanatory variable the adjusted-R? increases to
0.11, which represents a significant improvement relative to the R? of 0.04 re-
ported by Wurgler and Zhuravskaya (2002).22 Furthermore, in regressions that
include both the interaction term and the individual terms, only the interaction

22 In unreported analysis (available upon request), we find that total volatility has more ex-
planatory power than residual volatility (R? of 0.06 and 0.04, respectively). Residual volatility is
not statistically significant when total volatility or our estimate of price impact are included in the
regression, while the variables suggested by the model retain statistical significance.
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Table I1
Regressions Explaining Abnormal Returns around S&P 500 Additions

This table reports estimated coefficients from cross-sectional regressions of abnormal returns around
S&P 500 index inclusions. The dependent variable is the abnormal stock return cumulated from the
announcement date to the inclusion date. Abnormal returns are the residuals from a one-factor market
model. Market model parameters are estimated over a 150-day window ending 21 days prior to the
announcement date using the value-weighted CRSP index as a proxy for market returns. Volatility is the
annualized standard deviation of stock returns. Order Flow is the square root of the ratio of transaction
value to calibrated buy order arrival rate, ./ @ /A. The calibrated buy order arrival rate, A, is estimated
via ordinary least squares procedure (OLS) and a weighted least squares procedure (GLS) that weights
observations by total dollar value. The estimate of transaction size, @, is the dollar value of shares expected
to be purchased by funds mimicking the S&P 500 index. The adjusted-R? is denoted as R2, ¢-statistics are
in parentheses, and the number of observations is denoted as N.

Variable [1] [2] [3] [4] [5] [6] [7] [8] [9]
Intercept 0.0325 0.0533 0.0173 0.0459 0.0409 0.0565 0.0188 0.0463 0.0414
(3.24) (7.63) (1.59) (7.38) (2.83) (7.78) (1.66) (7.02) (2.65)
Volatility 0.0799 0.0798 0.0204 0.0817 0.023
(4.13) (4.20) (0.66) (4.27) (0.67)
Order flow (OLS) 0.0001 0.0001 0.0204
(3.11) (3.20) (0.66)
Volatility x 0.0003 0.0004
Order flow (OLS) (5.69) (2.45)
Order flow (GLS) 0.0001 0.0001 —0.0000
(2.31) (2.54) (—0.66)
Volatility x 0.0003 0.0004
Order flow (GLS) (4.99) (2.08)
R? 0.060 0.033 0.093 0.110 0.111 0.017 0.079 0.086 0.091
N 255 255 255 255 255 255 255 255 255

term is significant, suggesting that the specific form recommended by the model
is better than an ad hoc specification. Finally, our results hold independent
of whether the order flow arrival rates are calibrated using the OLS or GLS
procedure.

The final analysis involves regressing the CARs on the model-predicted price
impact, p(@),

CAR; =y + v1- E[p(Q)]. (21)

Although qualitatively similar to the previous analysis, here the expected price
impact is properly scaled according to equation (11) and includes the intercept,

Elp(@)]=pho+0- \/g . Consequently, if the model is an unbiased predictor of

the liquidity component of the event abnormal returns, the slope coefficient,
y1, should be precisely equal to one. Under this specification, the intercept,
¥0, can be interpreted as a measure of the average information (or other) effect
associated with the event. The results from this regression for a few model spec-
ifications are displayed in Table III. The estimates of the slope coefficients for
the limit order model are roughly equal to 1.2 and are not statistically distin-
guishable from 1 at conventional significance levels. For comparison, we include
the results for a linear model of transaction costs. Here, the slope coefficients
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Table III
Regressions of Actual Event Reactions on Expected Event Reactions

This table reports estimated coefficients from cross-sectional regressions of abnormal returns
around S&P 500 index inclusions. The dependent variable is the abnormal stock return cumu-
lated from the announcement date to the inclusion date. Abnormal returns are the residuals from
a one-factor market model. Market model parameters are estimated over a 150-day window end-
ing 21 days prior to the announcement date using the value-weighted CRSP index as a proxy for
market returns. For the limit order model, E [Price Impact] = By + o - /@ /2, is calculated for each
firm being included in the S&P 500 index. The estimate of transaction size, @, is the dollar value of
shares expected to be purchased by funds mimicking the S&P 500 index. The per second buy order
arrival rate, A, and the intercept, B¢, are calibrated for each firm from trade and quote data (TAQ)
data over the year prior to the announcement date using either an ordinary least squares (OLS) or
weighted least squares (GLS) regression as in Table I. The per second volatility, o, is the standard
deviation of daily returns over the year prior to the announcement date, scaled by the square root
of trading seconds per day. For the linear model, E[Price Impact] = by + b1 - @, where by and b,
are calibrated for each firm from TAQ data over the year prior to the announcement date using
either an ordinary least squares (OLS) or weighted least squares (GLS) regression as in Table I.
The adjusted-R? is denoted as R2, t-statistics are in parentheses, and the number of observations
is denoted as N.

RZ

Model Intercept E[Price Impact] [N]
Limit order model calibrated via OLS 0.04 1.22 0.11
(6.77) (5.79) [255]
Limit order model calibrated via GLS 0.04 1.21 0.09
(6.40) (5.10) [255]
Linear model calibrated via OLS 0.07 0.01 0.00
(2.31) (1.36) [255]
Linear model calibrated via GLS 0.07 0.00 0.00
(2.61) (0.93) [255]

are roughly zero and the R2s are minuscule relative to those from the limit
order model.

It is particularly encouraging that the improvement of the limit order model
over the linear model is so extreme in this setting, in contrast to the modest
improvement it delivered in the earlier calibration exercise using all NYSE
firms. Because transactions associated with index inclusions are over 300 times
larger than the maximum transaction size included in the calibration, we take
this as evidence that the limit order model performs well out-of-sample. This
presents strong evidence in favor of the concave price impact specifications, and
confirms that the model is able to deliver unbiased predictions in situations in
which data are limited, and therefore in which a model is most needed.

V. Conclusion

This paper views the wedge between fundamental value and capital market
transaction prices as emerging from an imperfect market for immediacy. In
a setting with stochastic arrivals of buyers and sellers, we grant the market
maker the privilege of being the sole trading counterparty for investors with
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inelastic demands for immediacy, enabling him to extract rents from impatient
order flow. The magnitude of these rents depends on the competition implicit
in opposing order flow and defines the price of immediacy.

The mechanism for trade in our model is a limit order, and immediacy is sup-
plied when the limit order is executed by either the market maker or opposing
order flow. We view limit orders as options and their value as a measure of the
cost of transacting. Because of his unique position, the market maker is the
effective owner of the option embedded in a limit order, and he must decide
when and if to exercise this option. The incentive for exercising a limit order
option early arises through competition for the order with the opposing order
flow, which from the market maker’s perspective acts like a stochastic liqui-
dating dividend. In this setting, limit prices that induce immediate exercise of
the American-type limit orders determine the price of immediacy at various
quantities and are functionally equivalent to bid and ask prices.

The option-based model of immediacy proposes that immediacy prices are
determined by the product of the fundamental volatility of the security and the
square root of a scaled measure of instantaneous excess demand, that is, the
ratio of order quantity to share arrival rate. Larger transactions effectively re-
quire writing options with longer maturity, and option values increase with the
square root of time to maturity. This simple formula can be readily calibrated
using empirical data and used to generate the entire unobserved quantity struc-
ture of transaction costs. Empirical analysis of stock market transactions for
NYSE firms supports the predictions of the model, confirming that our model
with full information, but imperfect market making, is able to describe a range
of properties of real-world transaction costs.

Two simple implications of our basic setup are that market makers are long
volatility and that they earn profits in the presence of order imbalances. This
seems to fit with common intuition and empirical evidence on supplying liquid-
ity. For example, in the price pressure hypothesis proposed by Scholes (1972),
uninformed shifts in excess demand can cause prices to temporarily diverge
from their information-efficient values to compensate those that provide liq-
uidity. This should not occur with perfectly competitive market making in the
absence of imperfect information. Our model captures this notion of price pres-
sure through imperfect competition. A larger order flow imbalance represents
a weakening of competition for the monopoly market maker, allowing him to
extract larger rents. In other words, investors with common liquidity demands
are forced to write options with longer effective maturities (i.e., more valuable
options) when order imbalances grow and/or become somewhat persistent. A
consequence of this type of price pressure is that supplying immediacy in these
situations is profitable.

An attractive feature of the limit order framework is that the model can
be estimated as a function of observable variables. We propose a method for
implementing the model using forecasts of volatility and order flow data. We
also jointly test the model and the calibration procedure by predicting the price
reaction for firms being added to the S&P 500 index. As the model predicts,
we find that volatility and the square root of the ratio of transaction size to
order flow are significant variables in explaining price reactions. Moreover, the
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model produces unbiased forecasts of the price reaction in a setting in which the
average transaction size is over 300 times larger than the largest transaction
used in the calibration. This compares very favorably with alternative models,
which produce highly biased estimates when used this far out-of-sample.

The practicality of the option-based framework suggests that it may be an
interesting platform for future theoretical and empirical research. In particular,
the model could be used to estimate the immediacy component of corporate
transactions such as security issuance, repurchases, and takeovers. Finally,
the model may be a useful step towards a new measure of liquidity risk. The
uncertainty over transactable prices, relative to fundamental value, produces
liquidity risk. As such, the time series variation of the price of immediacy is
a natural measure of this risk. This suggests extending the baseline model to
incorporate time-varying arrivals and investigating commonality in the time
dynamics of the resulting quantity structure of immediacy prices.

Appendix A: The Pricing of Limit Orders

Proofs: Let L(V,, @, K, t) denote the time ¢ value of a @-share limit order with
a limit price of K. Due to the potential for order execution, the evolution of the
limit order’s value is described by the following law of motion:

dL(Vt’ Q’ K’ t) = Alimo[n(t,t + At) : (L(VtJrAt’ Q7 K’ t) - L(Vt’ Q’ K7 t))

+(1—n@,t+At)-(0—-L(\V;, Q, K, 1)), (A1)

where 7 (¢, t + At) denotes the probability that the limit order remains unex-
ercised over an interval of length At. To derive the limit we make use of Ito’s
lemma and the assumption of Poisson arrival of oncoming order flow. Specif-
ically, if we denote the fundamental value of the underlying block of shares,
Fo:=Q -V, the limit in equation (Al) can be shown to converge to

1 .
dL =Lp -(dFq,)+ QLFF (dFg.:)* —((Q)dt)- L, (A2)

where 1/(Q) is the quantity-dependent arrival rate of oncoming order flow and
subscripts denote partial derivatives. Note that we have dropped the notation
that explicitly depicts the dependence of L(-), and its partial derivatives, on the
underlying variables.

Finally, to derive a differential equation for the price of the limit order option,
we impose the no-arbitrage pricing condition, E;[d(A;L)] = 0. Substituting in
the stochastic processes for the pricing kernel, dA;, the limit order value, dL,
and the fundamental value of the underlying block of shares, dFg ., we obtain
the following ordinary differential equation (ODE):

1 )
Lr -(rFq.:)+ ELFF (0Fg )% —(r +2(Q)L = 0. (A3)

This ODE is an equidimensional equation whose solution is given by a linear
combination of power functions,
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L/(V,, Q,K,t) = aoF g, +anFy

o (A4)

where (g, @1) are two constants of integration that will be determined from the
boundary conditions. We use the superscript, j, on the value of the limit order
to indicate that the same functional form applies to sell and buy limit orders
(j =S and j = B, respectively). The value of a sell (buy) limit order depends
on the quantity-dependent arrival intensity, AX(®), of buy (sell) market orders
(i = Bandi = S, respectively) through the power coefficient, ¢ (A?). To solve for
the power coefficients, we substitute the guess Fg,t into equation (A3) to obtain
a quadratic equation in ¢:

2
r-¢+%~¢(¢>—1)—(r+ki(Q))=0. (A5)

The power coefficients are given by the roots of this equation:

o (1 7 1 r\? 20 +r(Q)
¢i(x)—<§—ﬁ)i\/<§—ﬁ> e (AB)

To complete the solution, we need to identify the constants of integration, («y,
a1), by imposing the boundary conditions. We show the derivation for the case
of a sell limit order, and leave the derivation for a buy limit order, which is
symmetric, to the reader.

To solve for the value of a perpetual sell limit order, subject to cancellation at
a rate AB(Q), we first conjecture that it is optimal for the market maker to fill
the limit order whenever fundamental value V; reaches V* (from below). We
then impose the following boundary conditions:

limLS =0 (A7)
V.10
lim LS =Q - (V* - K) (A8)
AN
lim L5 = 1. (A9)
Vitve

The first condition indicates that the call option becomes worthless as the value
of the underlying tends to zero and requires that o; = 0. The second and third
conditions, respectively, correspond to the value matching and smooth pasting
conditions at the optimal exercise threshold, V*. Together they pin down the
value of @y and V*. This yields a solution to the ODE (A3) of the form:

QK (¢+()\'B) _ 1 E)¢+()\B) V V*
LSV, Q. K,0=14.05-1 " ¢,GF) 'K '

Q- (V*—K) V, > V*

(A10)

with the associated optimal barrier level, V* = ( Jj\(,j\f _) ;) -K. QE.D.
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Appendix B: Finite Maturity Limit Orders

The baseline model of Section I is solved under the assumption that limit
order writers never cancel a submitted order. This feature allows us to treat
the limit order option as a perpetual option, subject to a stochastic liquidating
dividend in the form of execution by the opposing order flow. However, since
this assumption is clearly open to challenge, we devote this appendix to showing
that it can be relaxed considerably without any effect on the qualitative features
of the quantity structure of immediacy prices.

We begin our analysis by considering limit orders that are subject to random
cancellation by the limit order writer, and then turn our attention to limit or-
ders with a finite maturity date. Although limit orders are de facto unlikely to
be canceled at randomly selected times, random cancellation will be observa-
tionally indistinguishable from a deterministic cancellation rule so long as the
market maker cannot infer this rule. We therefore assume that a limit order is
canceled by the order writer at the N* arrival time of a Poisson process with
intensity n. Under this auxiliary assumption, the order cancellation time, t,
will have an Erlang distribution with

N
_n N-1_—nt
Pr{r edt} = N -1 1)!7,‘ e " dt, (B1)
and the expectation and variance of the cancellation time, 7, will be given by
N N
Elt] = —, var[t]= —- (B2)
n n

In the base case, when N = 1, the Erlang distribution collapses to an exponen-
tial distribution. In this case it is easy to show that the value of the buy and
sell limit orders continues to be given by the expressions provided in Section I,
but with slightly modified cancellation intensities.

ProrosiTioNn B.1: The value of a sell (buy) limit order that is subject to can-
cellation by the limit order writer at the first jump time of a Poisson process
with intensity, n, is equivalent to the value of a limit order that is not subject to
cancellation but is subject to a stochastic liquidating dividend arriving at rate
2(Q) given by:

Q) =2 (Q)+1n (B3)
A proof of this result can be found in Section C of the Technical Appendix.

The simple isomorphism between limit orders that are not subject to can-
cellation by the limit order writer (i.e., perpetual limit orders) and those that
are, shows that the qualitative features of the quantity structure of transaction
prices will be unaffected by the introduction of the cancellation feature.

To establish that our results continue to hold for limit orders with a finite,
deterministic maturity (i.e., orders that will be canceled at a future date T'),
we exploit the randomization device of Carr (1998). This mathematical device
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takes advantage of the scaling of the moments of an Erlang distributed random
variable in the Poisson arrival intensity, n, to synthesize a random variable with
a pre-specified mean and zero variance. To see this, suppose we let n = %, and
allow N — oco. Asymptotically, the moments of the limit order cancellation time,
7, collapse to E[t] — T and var[t] — 0. In other words, the limit order is canceled
at time T with unit probability.

To determine the value of a limit order subject to cancellation at time T,
it is therefore sufficient to determine the value of the limit order subject to
Erlang cancellation when n = &, and N — oco. Under the Erlang cancellation
scheme, the value of a limit order will depend on the fundamental value of
the underlying, Fg,; the arrival intensity of the opposing order flow, A{(Q);
and the number of periods left to the termination of the option, n. Given these
assumptions, the value of the limit order will be given by the solution to the
following system of N (n = N ...1) ordinary differential equations:

1 .
L(I;l) . (rFQ,t) + EL%F)‘ . (UFQ,t)Z . LW = AHQ) - (L(n) —0)+7n- (L(n) _ L(n—l))’
(B4)

with L© = 0 (i.e., the limit order becomes worthless upon cancellation). The
terms on the left-hand side of the equation represent the evolution of the limit
order value in the absence of jumps, whereas the terms on the right-hand side
represent the probability weighted losses from order exercise by oncoming or-
der flow and the passage of time, as measured by the jumps in the Poisson(z)
variable. To solve this system of ODEs we proceed by backwards recursion,
starting with state n = 1. The solution is comprised of a sequence of state-
dependent value functions and the associated optimal early exercise thresholds.
A characterization of the complete, recursive solution is given in the following
proposition.

ProrosiTioN B.2: The value of a sell limit order in state n is given by:

B B
anF&?)+mmJ%ﬁ)+(__ﬁ__>.FW

n+2B(Q)
(n,S) _ n %
w02 () o izvia B9
B
o Fo + LOS(V, < Vi) V, <V,

where V', denotes the optimal early exercise threshold for state n and L;)”’S)(Vt <

V*_,) is an analytical expression related to the value function, L™=15 in the
continuation region for state n — 1. The values for (aon, a1, Bon, Vi) can
be determined by solving a system of equations described in Section C of the
Technical Appendix. Section C also provides the corresponding result for a buy
limit order.

It is possible to show that the sequence of optimal exercise thresholds for a
sell limit order, V7, is increasing in n, reflecting the increasing time value of the
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limit order option. Despite the complexity of the full solution, the form of the
value function characterizing the limit order option in an arbitrary state, n, is
closely related to the solution from Section I. The recursive analytical solution,
combined with numerical solution of the system of equations parameterizing
the coefficients of the value function and optimal exercise threshold, confirms
that the quantity structure of transaction prices (now indexed by state n) re-
tains all the qualitative features examined in Section II.
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