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LIFETIME PORTFOLIO SELECTION UNDER 
UNCERTAINTY: THE CONTINUOUS-TIME CASE 

Robert C. Merton * 

I Introduction 

OST models of portfolio selection have 
M been one-period models. I examine the 

combined problem of optimal portfolio selec- 
tion and consumption rules for an individual in 
a continuous-time model whzere his income is 
generated by returns on assets and these re- 
turns or instantaneous "growth rates" are sto- 
chastic. P. A. Samuelson has developed a sim- 
ilar model in discrete-time for more general 
probability distributions in a companion paper 
[8]. 

I derive the optimality equations for a multi- 
asset problem when the rate of returns are 
generated by a Wiener Brownian-motion proc- 
ess. A particular case examined in detail is 
the two-asset model with constant relative risk- 
aversion or iso-elastic marginal utility. An 
explicit solution is also found for the case of 
constant absolute risk-aversion. The general 
technique employed can be used to examine a 
wide class of intertemporal economic problems 
under uncertainty. 

In addition to the Samuelson paper [8], there 
is the multi-period analysis of Tobin [9]. 
Phelps [6] has a model used to determine the 
optimal consumption rule for a multi-period 
example where income is partly generated by 
an asset with an uncertain return. Mirrless [5] 
has developed a continuous-time optimal con- 
sumption model of the neoclassical type with 
technical progress a random variable. 

II Dynamics of the Model: The Budget Equation 

In the usual continuous-time model under 
certainty, the budget equation is a differential 
equation. However, when uncertainty is intro- 
duced by a random variable, the budget equa- 

tion must be generalized to become a stochastic 
differential equation. To see the meaning of 
such an equation, it is easiest to work out the 
discrete-time version and then pass to the limit 
of continuous time. 

Define 
W(t) total wealth at time t 
Xi(t) price of the ith asset at time t, (i 1, 

. . . ,m) 
C (t) consumption per unit time at time t 
w,(t) proportion of total wealth in the ith 

asset at time t, (i 1,..., m) 
Note 

m 
( _ w,(t)e1) 

j=j t 

The budget equation can be written as 

W7(t) = [ 1 w ?(to) ] 

[W(to) - C(to)h] (1) 

where t to + k and the time interval between 
periods is h. By subtracting W(to) from both 

sides and using X w(to) = 1, we can rewrite 
i=l 

(1) as, 
W (t)-w (to) 

[() - W(t (to)) ( X i(t ) 

IF V(to) - C(to)h ]- C(to)hk 

m 
._E w(to) (e9t(tO)h_ 1) 

[w (to) - C(to)]h -C(to)h (2) 

where 
gi(to)h log [Xi(t)/Xi(to)], 

the rate of return per unit time on the ith asset. 
The gi(t) are assumed to be generated by a 
stochastic process. 

In discrete time, I make the further assump- 
tion that g,(t) is determined as follows, 

gi(t)h- (ai - oi2/2)h + AYi (3) 
where a1, the "expected" rate of return, is con- 

*This work was done during the tenure of a National 
Defense Education Act Fellowship. Aid from the National 
Science Foundation is gratefully acknowledged. I am in- 
debted to Paul A. Samuelson for many discussions and 
his helpful suggestions. I wish to thank Stanley Fischer, 
Massachusetts Institute of Technology, for his comments 
on section 7 and John S. Flemming for his criticism of an 
earlier version. 
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248 THE REVIEW OF ECONOMICS AND STATISTICS 

stant; and Y (t) is generated by a Gaussian 
random-walk as expressed by the stochastic 
difference equation, 

Y (t) - Y (to) _ AY* = Z (t) v\k (4) 

where each Z (t) is an independent variate 
with a standard normal distribution for every 
t, o'i2 is the variance per unit time of the process 
Yi, and the mean of the increment A 1Y is zero. 

Substituting for gi(t) from (3), we can re- 
write (2) as, 

m 

W1(t) - W(to) = > W,1(to) (e)(a,-2/2(k+ A Y) 

(W(to) - C(to)k) 
- C(to)h. (5) 

Before passing in the limit to continuous 
time, there are two implications of (5) which 
will be useful later in the paper. 

m 
E(to) [1W4(t) - W(to)] = { X (to)aWV(to) 

-C(to) } k+O(h2) 

(6) 
and 

E ( to) [(W (t)_W (to) = X w 2w(to)w1(to). 

E (to) (A Yi A j). 
W2(to) + 0(h2) 

(7) 
where E(to) is the conditional expectation 
operator (conditional on the knowledge of 
W(to)), and 0(o) is the usual asymptotic order 
symbol meaning "the same order as." 

The limit of the process described in (4) as 
h O-* 0 (continuous time) can be expressed by 
the formalism of the stochastic differential 
equation,' 

dlh, = a,Z, (t) \/ dt (4') 

and Y (t) is said to be generated by a Wiener 
process. 

By applying the same limit process to the 
discrete-time budget equation, we write (5) as 

dW = [ wi (t)aiW(t) - C(t) dt 

in 

+ X w,(t)0,Z,(t)W(t) \/dt. (5') 

The stochastic differential equation (5') is the 
generalization of the continuous-time budget 
eauation under uncertainty. 

A more familiar equation would be the aver- 
aged budget equation derived as follows: From 
(5), we have 

E(t0)[ W(t)-W(to) ] = X 
w*(to)a[ W(to) 

-C(to)k] - C(to) 

+ 0 (k). (8) 
Now, take the limit as h O-z 0, so that (8) be- 
comes the following expression for the defined 
"mean rate of change of wealth": 

W (to) limit E (to) [Wt- (o 
def. h+O h 

in 

= X qW (to) afW (to) - C(to). (8') 
1 

III The Two-Asset Model 

For simplicity, I first derive the optimal 
equations and properties for the two-asset 
model and then, in section 8, display the gen- 
eral equations and results for the m-asset case. 

Define 
wI (t) w(t) = proportion invested in the 

risky asset 
w2(t) = 1-w(t) = proportion invested in the 

sure asset 
g1(t) = g(t) = return on the risky asset 

(Var g. > 0) 
g2(t) = r = return on the sure asset 

(Var g2 = 0) 
Then, for g(t)h = (a - 0o2/2) h + AY, equa- 
tions (5), (6), (7), and (8') can be written as, 

W (t) - W(to) 
- [W(to) (e(a-02/2(h+AY)_ 1) 

+ (1 - w(to)) (e - 1)]. 
(W(to) - C(to)k - C(to)b. (9) 

E(to) [W (t)-W(to) ] 

= { [w(to)(a-r) + r]W(to) 

-C(to) } k+ 0(2). (10) 

E(to) [(W(t) -W(to))2] 
= w2 (to) W2 (to) E(to) [ (Ay)2] 
+ O(h2) = W2(to)W2(to)r2h 

+ 0(k2). (11) 
diV = [(w(t) (a-r) + r)W(t) -C(t) ] dt 

+ w(t)crZ(t)W(t) A/ dt. (12) 
0 

W(t) = [w(t) (a-r) + r]W(t) -C(t). (13) 

The problem of choosing optimal portfolio 
selection and consumption rules is formulated 
as follows, 

'See K. Ito [4], for a rigorous discussion of stochastic 
differential equations. 
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Max E { fte-Pt U [C (t) ] dt + B [W(T),T] } 
(14) 

subject to: the budget constraint (12), 
C(t) _ 0; W(t) > 0; W(0) - Wo > 0 

and where U(C) is assumed to be a strictly 
concave utility function (i.e., U'(C) > 0; 
U"(C) < 0); where g(t) is a random variable 
generated by the previously described Wiener 
process. B[W(T),T] is to be a specified "be- 
quest valuation function" (also referred to in 
production growth models as the "scrap func- 
tion," and usually assumed to be concave in 
W(T)). "E" in (14) is short for E(O), the 
conditional expectation operator, given W(O) 
= WO as known. 

To derive the optimality equations, I restate 
(14) in a dynamic programming form so that 
the Bellman principle of optimality 2 can be 
applied. To do this, define, 

I[W(t),t] - MaxE(t) rT e-ps U[C(s)]ds 

{C(s),w(s) } 

+ B[W(T),T]] (15) 
where (15) is subject to the same constraints 
as (14). Therefore, 

I[W(T),T] = B[W(T),T]. (1 5') 
In general, from definition (15), 

I[W(to),to] = Max E(to) [ft e-ps U[C(s)]ds 

{C (s),w(s)} 

+ I[W(t),t] ] (16) 
and, in particular, (14) can be rewritten as 

I(WO,O) = Max E[fo e-P U[C(s)]ds 
t C(s),w(s) } 

+ I [W (t),t] I ( 14') 
If t = to + h and the third partial derivatives 
of I[W(to),to] are bounded, then by Taylor's 
theorem and the mean value theorem for in- 
tegrals, (16) can be rewritten as 

I[W(to,to] = Max E(to) { ePtU[C(t)] 
{C,w} DI[W(t0),t0] 

+ I[W(to),to] + at 

+ aI[W(to),to] [W(t) - W(to] 

1 D2I[W(to),;t] 
2 DW2 

[W(t) - W(to)]2 + O(h2) } 
where t-E [to,t]. (17) 

In (17), take the E(to) operator onto each 
term and, noting that I[W(to),to] = E(to) 
I[W(to),to], subtract I[W(to)to] from both 
sides. Substitute from equations ( 10) and ( 11 ) 
for E(to) [W(t) - W1(to)] and E(to) [(W(t) 
- W(to))2], and then divide the equation by 
k. Take the limit of the resultant equation as 
h -O 0 and ( 17) becomes a continuous-time ver- 
sion of the Bellman-Dreyfus fundamental equa- 
tion of optimality, (17'). 

0 = Max [e-Pt U [C(t)] + at 
{C(t),w(t)} at 

+ aWt [ (W(t) (a-r) + r)W(t) - C(t)] 

+ 1/2 alt 2a2w2 (t) W2(t)] ] (17') Dw2 

where I, is short for I[W(t),t] and the sub- 
script on to has been dropped to reflect that 
(17') holds for any tE [0,T]. 

If we define b(w,C;W;t) { e-Pt U(C) 

+ + f- [(w(t)(a-r) +r)W(t) - at DW 

C(t)] + 1/2 Z) 2 
cr2w2(t)W2(t) } 3 then 

(17') can be written in the more compact form, 
Max p (w,C;W,t) = 0. (17") 
{C,w} 

The first-order conditions for a regular interior 
maximum to (17") are, 

oa [w*,C*;W,: t] - 0 = e-Pt U'(C) - DIt/DW 
(18) 

and 

(kw [w*;C*;W;t] - 0 = (a-r) DW 

+ WWr2. (19) 

A set of sufficient conditions for a regular in- 
terior maximum is 

4ww < 0; oce < 0; det[ ww OweJ > 0. 
iOew O ea 

Owe = ?tw = 0, and if I[W(t),t] were strictly 
concave in W, then 

= U"(c) < 0, by the strict concavity of U 
(20) 

and 

30(w,C:W:t) is short for the rigorous o[w,C; 3It/3t; 
aIt/DW; alItlaW'; It: W;t].- 

2 The basic derivation of the optimality equations in this 
section follows that of S. E. Dreyfus [2], Chapter VII. 
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ou7 = W(t)of2 
32t 

< 04, by the strict con- 
DW2 

cavity of It, (21) 
and the sufficient conditions would be satisfied. 
Thus a candidate for an optimal solution which 
causes I[W(t),t] to be strictly concave will be 
any solution of the conditions (17')-(21). 

The optimality conditions can be re-written 
as a set of two algebraic and one partial dif- 
ferential equation to be solved for w* (t), C* (t), 
and I[W(t),t]. 

cf[w*;C*;W;t] = 0 (18") 

Fa [[w*C*; W;t] = 0 (18) 
OW[W*,C*;W;t] = 0 (19) 

(*) subject to the boundary condition 
I[W(T),T] = B[W(T),T] and 
the solution being a feasible solu- 
tion to (14). 

IV Constant Relative Risk Aversion 

The system (*) of a nonlinear partial dif- 
ferential equation coupled with two algebraic 
equations is difficult to solve in general. How- 
ever, if the utility function is assumed to be of 
the form yielding constant relative risk-aver- 
sion (i.e., iso-elastic marginal utility), then (*) 
can be solved explicitly. Therefore, let U(C) 
= C/y, yy< 1 and y70 or U(C) =log C 
(the limiting form for y = 0) where- U" (C) 
C/U'(C) = 1 - 8 is Pratt's [7] measure 
of relative risk aversion. Then, system (*) can 
be written in this particular case as 

DIt 
7 

DIt 
+ t + @W rW 

D3t DaW 
(a-r) 2 [3It/fW] 2 (l 7ff) 

(*') - 2r2 32It/DW2 

C*(t) 
= ept 

3 (18) 

w*(t) = (a-r) Dlt/DW (19) 

92W D2It/D3W2 
subject to I[W(T),T] = El-ye-pT 

[W(T)]Y/y,forO <e << 1 

where a strategically-simplifying assumption 
has been made as to the particular form of the 
bequest valuation function, B[W(T),T].5 

To solve (17") of (*'), take as a trial solu- 
tion, 

t[W(t),t] = ()e_pt [W(t)],Y (22) 

By substitution of the trial solution into (17"), 
a necessary condition that It [W(t) ,t] be a 
solution to (17") is found to be that b(t) must 
satisfy the following ordinary differential equa- 
tion, 

b(t) = ph(t)-(1-y) [b(t)]-'Y1/-Y (23) 
subject to b(T) = E1l-, and where p,u p - y 
[(a - r)2/2cr2 (1 -_y) + r]. The resulting de- 
cision rules for consumption and portfolio selec- 
tion, C* (t) and w* (t), are from equations 
(18) and (19) of (*'), then 

C*(t) = [b(t)]1'Y-' W(t) (24) 

and 

w*(t) = (a-r) (25) 
2) (25) 

The solution to (23) is 
b (t) = { [ 1 + (vE-1) e(t-T) ] /v}l-y (26) 

where v ,/( 1 - y). 
A sufficient condition for I[W(t),t] to be a 

solution to (*') is that I[W(t),t] satisfy 
A. I [W (t) ,t] be real (feasibility) 

B. 32t (concavity for a maxi- 
a W2 mum) 

C. C*(t) 0 (feasibility) 
The condition that A, B, and C are satisfied in 
the iso-elastic case is that 

[1 + (vE-l) ev(t-T)]/V > 0, 0 - t - T (27) 
which is satisfied for all values of v when 
T < oo. 

Because (27) holds, the optimal consump- 
tion and portfolio selection rules are,6 

By the substitution of the results of (18) into (19) at 
(C*,w*), we have the condition w*(t) (a- r) > 0 if and 

32It 

only if 32 < 0. 

The paper considers only interior optimal solutions. The 
problem could have been formulated in the more general 
Kuhn-Tucker form in which case the equalities of (18) and 
(19) would be replaced with inequalities. 

'The form of the bequest valuation function (the bound- 
ary condition), as is usual for partial differential equations, 
can cause major changes in the solution to (*). The par- 
ticular form of the function chosen in (*') is used as a 
proxy for the "no-bequest" condition (e = 0). A slightly 
more general form which can be used without altering the 
resulting solution substantively is B[W(T),T] = e-PtG(T) 
[W(T)] 'Y/y for arbitrary G(T). If B is not of the iso- 
elastic family, systematic effects of age will appear in the 
optimal decision-making. 

'Although not derived explicitly here, the special case 
(y = 0) of Bernoulli logarithmic utility has (29) with y = 0 
as a solution, and the limiting form of (28), namely 

C*(t) = + p ' W(t). 
I + (pe-1I) ep(t-T) 
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C*(t) = [v/(1 + (vE-1) ep(t-T))] W(t), 
for v 0 

= [1/(T -t + e)] W(t), for v = 0 
(28) 

and 
w*(t) - ((I) = a constant independ- 

ent of W or t. (29) 

V Dynamic Behavior and the Bequest 
Valuation Function 

The purpose behind the choice of the par- 
ticular bequest valuation function in (*') was 
primarily mathematical. The economic motive 
is that the "true" function for no bequests is 
B[W(T),T] = 0 (i.e., E= 0). From (28), 
C*(t) will have a pole at t = T when E = 0. 

So, to examine the dynamic behavior of C*(t) 
and to determine whether the pole is a mathe- 
matical "error" or an implicit part of the eco- 
nomic requirements of the problem, the param- 
eter E was introduced. 
From figure 1, (C*/W)t=T -> oo asE--> 0. How- 
ever, one must not interpret this as an infinite 

FIGURE 1. 

Ge/w 

'V I 

Vv'E I 
0~~ it 

rate of consumption. Because there is zero 
utility associated with positive wealth for t > 
T, the mathematics reflects this by requiring 
the optimal solution to drive W(t) -> 0 as 
t -> T. Because C* is a flow and W(t) is a 
stock and, from (28), C* is proportional to 
W(t), (C*/W) must become larger and larger 
as t ->T to make W(T) = 0.7 In fact, if 
W(T) -) > 0, an "impulse" of consumption 
would be required to make W(T) = 0. Thus, 
eauation (28) is valid for E = 0. 

To examine some of the dynamic properties 
of C*(t), let E = 0, and define V(t) = [C*(t)/ 
W(t)], the instantaneous marginal (in this 
case, also average) propensity to consume out 
of wealth. Then, from (28), 

V(t) = [V(t)]2 ev(t-T) (30) 

and, as observed in figure 1 (for E= 0), V(t) 
is an increasing function of time. In a generali- 
zation of the half-life calculation of radioactive 
decay, define X as that tE [0,T] such that V(X-) 
= nV(O) (i.e., X is the length of time required 
for V(t) to grow to n times its initial size). 
Then, from (28), 

Tlog[ eT (1 ) + ] /v; for v 0 

- ( ( ) ) T , for v =0. 
(n) 

(31) 
To examine the dynamic behavior of W(t) 

under the optimal decision rules, it only makes 
sense to discuss the expected or "averaged" 
behavior because W(t) is a function of a ran- 
dom variable. To do this, we consider equation 
(13), the averaged budget equation, and evalu- 
ate it at the optimal (w*,C*) to form 

0 

W( 
M 

= V- V(t) (13') 
w (t) 

whereat = [ (a- r). +r], and, in sec- ~2(1 

tion VII, a* will be shown to be the expected 
return on the optimal portfolio. 

By differentiating (13') and using (30), we 
get 

0 

dt [ W ] -V(t) < o (32) 

which implies that for all finite-horizon optimal 
paths, the expected rate of growth of wealth is 
a diminishing function of time. Therefore, if 
a* < V(O), the individual will dis-invest (i.e., 
he will plan to consume more than his expected 
income, a*W(t)). If a* > V(O), he will plan 
to increase his wealth for 0 < t < 1, and then, 
dis-invest at an expected rate a* < V(t) for 

< K t < T where t is defined as the solution to 

1 = T + 'log 
a * v (33) 

v a* 

Further, t/3a* > 0 which implies that the 
length of time for which the individual is a net 

7The problem described is essentially one of exponential 
decay. If W(t) = Woe-(t), f(t) > 0, finite for all t, and 

WO> 0, then it will take an infinite length of time for 
W(t) = 0. However, if f(t) -* oo as t -* T, then W(t) -> 0 
as t-* T. 
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saver increases with increasing expected re- 
turns on the portfolio. Thus, in the case a. > 
V(O), we find the familiar result of "hump 
saving." 8 

VI Infinite Time Horizon 

Although the infinite time horizon case (T = 
oo) yields essentially the same substantive re- 
sults as in the finite time horizon case, it is 
worth examining separately because the opti- 
mality equations are easier to solve than for 
finite time. Therefore, for solving more com- 
plicated problems of this type, the infinite time 
horizon problem should be examined first. 

The equation of optimality is, from section 
III, 

O = Max Le-Pt U(C)+ + t 

{C,w} t 

+ it [ (w(t) (a-r) + r)W(t) - C(t)] 

+ 1/2 t 2w2(t)W2(t) (17') 

However (17') can be greatly simplified by 
eliminating its explicit time-dependence. De- 
fine 

J [W (t) t] ePt I [W(t) t] 
=Max E(t) foo e-P(sYt) U[C]ds 

{C,w} 
= Max EfO e-Pv U[C]dv, 

{C,w} 
independent of explicit time. (34) 

Thus, write J[W(t),t] = J[W] to reflect this 
independence. Substituting J[W], dividing by 
e-Pt, and dropping all t subscripts, we can re- 
write (17') as, 

O = Max [U(C)-pi + J'(W). 
{C,w} 
{(w(t)(a-r) + r)W-C} 

+ 1/2 1"(W)aU2w2W2]. (35) 
Note: when (35) is evaluated at the optimum 
(C*,w*), it becomes an ordinary differential 
equation instead of the usual partial differential 
equation of (17'). For the iso-elastic case, 
(35) can be written as 

(1y) o = _W__ p1(W) 

(a-r)2 [J'(W)]2 +rWI(W) (36) 
2of2 J"(W) 

where the functional equations for C* and w* 
have been substituted in equation (36). 

The first-order conditions corresponding to 
(18) and (19) are 

O = U'(C) -I'(W) (37) 

and 
O = (a-r)J'(W) + I"'Wo2 (38) 

and assuming that limit B[W(T),T] = 0, the 

boundary condition becomes the transversality 
condition, 

limit E[I[W(t),t]] = 0 (39) 

or 
limitE[e-PtJ[W(t)]] = 0 

t->(* 

which is a condition for convergence of the in- 
tegral in (14). A solution to (14) must satisfy 
(39) plus conditions A, B, and C of section IV. 
Conditions A, B, and C will be satisfied in the 
iso-elastic case if 

V* V - 
P (a[ r)2 + r ] 

1--y 2or2(1_ y)2 1-y 
> 0 (40) 

holds where (40) is the limit of condition (27) 
in section IV, as T -> oo and V* = C*(t)/W(t) 
when T = oo. Condition (39) will hold if p > 

0 0 

y W/W where, as defined in (13), W(t) is the 
stochastic time derivative of W(t) and W(t)/ 
W(t) is the "expected" net growth of wealth 
after allowing for consumption. That (39) is 
satisfied can be rewritten as a condition on the 
subjective rate of time preference, p, as follows: 

for y < 0 (bounded utility), p > 0 
= 0 (Bernoulli log case), p > 0 

0 < y < 1 (unbounded utility), p> y 
[ (a-r)2(2- y) + r 

2L 2 ( 1) _j. 
(41) 

Condition (41) is a generalization of the usual 
assumption required in deterministic optimal 
consumption growth models when the produc- 
tion function is linear: namely, that p > Max 
[0, y ,8] where /3 = yield on capital.9 If a "di- 

8"Hump saving" has been widely discussed in the litera- 
ture. (See J. De V. Graaff [3] for such a discussion.) 
Usually "hump saving" is discussed in the context of work 
and retirement periods. Clearly, such a phenomenon can 
occur without these assumptions as the example in this 
paper shows. 

'If one takes the limit as o-*2 0 (where a.2 is the 
variance of the composite portfolio) of condition (41), then 
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minishing-returns," strictly-concave "produc- 
tion" function for wealth were introduced, then 
a positive p would suffice. 

If condition (41) is satisfied, then condition 
(40) is satisfied. Therefore, if it is assumed 
that p satisfies (41), then the rest of the deri- 
vation is the same as for the finite horizon case 
and the optimal decision rules are, 

Cx*(t) = { p_ Y [ 22(a-r)2 C,X* (t) __ - 
7 2o2( 

+ ]XWt) (42) 

and 

w*(t) = (a- r) (43) 

The ordinary differential equation (35), 
J" = f (J,J'), has "extraneous" solutions other 
than the one that generates (42) and (43). 
However, these solutions are ruled out by the 
transversality condition, (39), and conditions 
A, B, and C of section IV. As was expected, 
limit C* (t) = C.* (t) and limit w* (t) = WOO* 
T + oo T-+ o 
(t). 

The main purpose of this section was to 
show that the partial differential equation (17') 
can be reduced in the case of infinite time 
horizon to an ordinary differential equation. 

VII Economic Interpretation of the Optimal 
Decision Rules for Portfolio Selection 

and Consumption 

An important result is the confirmation of 
the theorem proved by Samuelson [8], for the 
discrete-time case, stating that, for iso-elastic 
marginal utility, the portfolio-selection deci- 
sion is independent of the consumption deci- 
sion. Further, for the special case of Bernoulli 
logarithmic utility (y = 0), the separation goes 
both ways, i.e., the consumption decision is 
independent of the financial parameters and is 
only dependent upon the level of wealth. This 
is a result of two assumptions: (1) constant 
relative risk-aversion (iso-elastic marginal util- 
ity) which implies that one's attitude toward 
financial risk is independent of one's wealth 
level, and (2) the stochastic process which 

generates the price changes (independent in- 
crements assumption of the Wiener process). 
With these two assumptions, the only feed- 
backs of the system, the price change and the 
resulting level of wealth, have zero relevance 
for the portfolio decision and hence, it is con- 
stant. 

The optimal proportion in the risky asset,10 
w*, can be rewritten in terms of Pratt's relative 
risk-aversion measure, 8, as 

w* = (a- r) (29') 

The qualitative results that 3w*/3a > 0, 
Dw*/Dr < 0, Dw*/Dor2 < 0, and Dw*/D8 < 0 
are intuitively clear and need no discussion. 
However, because the optimal portfolio selec- 
tion rule is constant, one can define the opti- 
mum composite portfolio and it will have a 
constant mean and variance. Namely, 

a. = E[w*(a+AY) + (1-w*)r] = W*a 

+ (1-w*)r (ar)2 + r (44) 

*2= Var [w* (a+AY) + (1-w*)r] 

w*2a2 = (a-r)2 (45) 

After having determined the optimal w*, one 
can now think of the original problem as having 
been reduced to a simple Phelps-Ramsey prob- 
lem, in which we seek an optimal consumption 
rule given that income is generated by the 
uncertain yield of an (composite) asset. 

Thus, the problem becomes a continuous- 
time analog of the one examined by Phelps [6] 
in discrete time. Therefore, for consistency, 
C.*(t) should be expressible in terms of a*, 
0J*27 8, p, and W(t) only. To show that this is, 
in fact, the result, (42) can be rewritten as," 

(41) becomes the condition that p > max[O,ya*] where a* 
is the yield on the composite portfolio. Thus, the deter- 
ministic case is the limiting form of (41). 

10Note: no restriction on borrowing or going short was 
imposed on the problem, and therefore, w* can be greater 
than one or less than zero. Thus, if a < r, the risk-averter 
will short some of the risky asset, and if a > r + a% he 
will borrow funds to invest in the risky asset. If one wished 
to restrict w*e[O,1], then such a constraint could be intro- 
duced and handled by the usual Kuhn-Tucker methods 
with resulting inequalities. 

" Because this section is concerned with the qualitative 
changes in the solution with respect to shifts in the param- 
eters, the more-simple form of the infinite-time horizon 
case is examined. The essential difference between Co,*(t) 
and C*(t) is the explicit time dependence of C*(t) which 
was discussed in section V. For simplicity, the "oo" on 
subscript C,,*(t) will be deleted for the rest of this section. 
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t+z* = + t - vo1) - 2 (t)z 

= V W(t) (46) 

where V = the marginal propensity to consume 
out of wealth. 

The tools of comparative statics are used to 
examine the effect of shifts in the mean and 
variance on consumption behavior in this mod- 
el. The comparison is between two economies 
with different investment opportunities, but 
with the individuals in both economies having 
the same utility function. 

If 0 is a financial parameter, then define 
[ DC ] the partial derivative of consump- 

tion with respect to 0, IO[WO] being held fixed, 
as the intertemporal generalization of the 

Hicks-Slutsky "substitution" effect, [ a ]U 
DO U 

for static models. [DC*/DO- (DC*/DO)1O] 
will be defined as the intertemporal "income" 
or "wealth" effect. Then, from equation (22) 
with Io held fixed, one derives by total differen- 
tiation, 

=-^1 Db(f Wo + b(O) (DW o ) 0 -8-1 DO Do'1 
(47) 

From equations (24) and (46), b(O) = V-1, 
and so solving for (DWO/DO)1O in (47), we can 
write it as 

awO -swo av (48) 
Do Io (8-1)V 30 

Consider the case where O= a*, then from 
(46), 

aV _ (8-1) (9) 
Da* 8 

and from (48), 
(DC* wo (50) 

Da Io V 

Thus, we can derive the substitution effect of 
an increase in the mean of the composite port- 
folio as follows, 

( D I [DV W ] Io 

Da* Ii0 LDac Dat* i0 

w0 
=- - 

< 0. (51) 

Because DC*/Da* = (V/Da*))Wo= [(8-1)/8] 
Wo, then the income or wealth effect is 

[C* C*2a = Wo > I (52) 

Therefore, by combining the effects of (51) 
and (52), one can see that individuals with low 
relative risk-aversion (O < 8 < 1) will choose 
to consume less now and save more to take ad- 
vantage of the higher yield available (i.e., the 
substitution effect dominates the income effect). 
For high risk-averters (8 > 1), the reverse is 
true and the income effect dominates the sub- 
stitution effect. In the borderline case of Ber- 
noulli logarithmic utility (8 = 1), the income 
and substitution effect just offset one another.'2 

In a similar fashion, consider the case of 
0 = - T*2213 then from, (46) and (48), we de- 
rive 

( ( -2) ) = W2V (53) 
and 

( )) = 2 < , the substitution 

effect. (54) 
Further, DC*/D(-Go*2) = (8-1)WO/2, and so 

DC* D C* A 
J - 3(-(r2 ) 3 ( * r2 ) 10 

= 2 WO > O, the income effect. 

(55) 
To compare the relative effect on consump- 

tion behavior of an upward shift in the mean 
versus a downward shift in variance, we ex- 
amine the elasticities. Define the elasticity of 
consumption with respect to the mean as 

DC* 
Elct - /C* a*( -1)/8V (56) 

Da* 

and similarly, the elasticity of consumption 
with respect to the variance as, 

E2 D2 aC* / C*= _2(8_ 1)/2V (57) 

For graphical simplicity, we plot el 
[VE,/a*] and e2 - -[VE2/a*] and define k 

'2Many writers have independently discovered that Ber- 
noulli utility is a borderline case in various comparative- 
static situations. See, for example, Phelps [6] and Arrow 
[1]. 

[1 Because increased variance for a fixed mean usually 
(always for normal variates) decreases the desirability of 
investment for the risk-averter, it provides a more sym- 
metric discussion to consider the effect of a decrease in 
variance. 
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FIGuRE 2. 

ei 
I - -- --- - -- ------ - 

-k ~ ~ ~ ~ ~ 1Y 

l -k __ __ _ _ ____ 

'*2/2a*. e, and e2 are equal at 8 1, l/k. The 
particular case drawn is for k < 1. 

For relatively high variance (k > 1), the 
high risk averter (8 > 1) will always increase 
present consumption more with a decrease in 
variance than for the same percentage increase 
in mean. Because a high risk-averter prefers 
a steadier flow of consumption at a lower level 
than a more erratic flow at a higher level, it 
makes sense that a decrease in variance would 
have a greater effect than an increase in mean. 
On the other hand, for relatively low variance 
(k < 1), a low risk averter (0 < 8 < 1) will 
always decrease his present consumption more 
with an increase in the mean than for the same 
percentage decrease in variance because such 
an individual (although a risk-averter) will 
prefer to accept a more erratic flow of con- 
sumption in return for a higher level of con- 
sumption. Of course, these qualitative results 
will vary depending upon the size of k. If the 
riskiness of the returns is very small (i.e., 
k < < 1), then the high risk-averter will in- 
crease his present consumption more with an 
upward shift in mean. Similarly, if the risk- 
level is very high (i.e., k > > 1) the low risk 
averter will change his consumption more with 
decreases in variance. 

The results of this analysis can be summed 
up as follows: Because all individuals in this 
model are risk-averters, when risk is a domi- 
nant factor (k > > 1), a decrease in risk will 
have the larger effect on their consumption 
decisions. When risk is unimportant (i.e., 
k < < 1), they all react stronger to an increase 
in the mean yield. For all degrees of relative 
riskiness, the low risk-averter will give up some 
present consumption to attain an expected 

higher future consumption while the high risk 
averter will always choose to increase the 
amount of present consumption. 

VIII Extension to Many Assets 

The model presented in section IV, can be 
extended to the m-asset case with little diffi- 
culty. For simplicity, the solution is derived in 
the infinite time horizon case, but the result is 
similar for finite time. Assume the Mth asset to 
be the only certain asset with an instantaneous 
rate of return am = r.'4 Using the general 
equations derived in section II, and substituting 

n 
for wm(t) =1- : wi (t) where n-m - 1, 

j=j 

equations (6) and (7) can be written as, 
E(to) [W(t) -W(to)] 

= [w' (to) (a-r) + r] W(to) k 
-C(to)k + 0(h2) (6) 

and 
E(to) [(W(t) -W(to) )2 

= w'(to) a w(to) W2(to)h 
+ 0(h2) (7) 

where 
w'(to) [wi(to), .... ,wn(to)], a n-vector 
at - a,, ... 1 a<] 

= [r,...,r] a n-vector 
Q [fj[], the n X n variance-covariance 

matrix of the risky assets 
a is symmetric and positive definite. 

Then, the general form of (35) for m-assets is, 
in matrix notation, 

O=Max [U(C)-p J(W) 
{C,w} 

+ J'(W) { [w'(a-r) + r] W - C} 

+ 2 J"(W) we Q wW2] (58) 

and instead of two, there will be m first-order 
conditions corresponding to a maximization of 
(35) with respect to w, .. . , wn, and C. The 
optimal decision rules corresponding to (42) 
and (43) in the two-asset case, are 

A A 

C.O* (t) = { P__ (a-r)'&Y(a-r) +~*(t = { - 2 ( ] } ty) 2 

+ ()(59) 

14 Clearly, if there were more than one certain asset, the 
one with the highest rate of return would dominate the 
others. 
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and 
1 A 

wX,*(t) = Q- (a-r) (60) 
(l1-y) 

where w*'(t) - [wl* (t), . . ., w,* (t) 

IX Constant Absolute Risk Aversion 

System (*) of section III, can be solved ex- 
plicitly for a second special class of utility 
functions of the form yielding constant absolute 
risk-aversion. Let U(C) = -e-Ocfq, qj> 0, 
where -U"(C)/U'(C) = -q is Pratt's [17] 
measure of absolute risk-aversion. For con- 
venience, I return to the two-asset case and in- 
finite-time horizon form of system (*) which 
can be written in this case as, 

0= -J'(W) 
O- ( ) -pJ (W) + J'(W)rW 

+ I (W) log [J'(W)] 
(a-r) 2 [J'(W)]2 (17") 

(*"f) 22o2 J"(W) 

C*(t)= --log [J'(W)] (18) 

w*(t) = -J'(W) (a-r)/r,2 W J"(W) 
subject to limit E [ e -PtJ (W (t) 0 

t-oo 
(19) 

where J(W) - ePt [W(t) ,t] as defined in sec- 
tion VI. 

To solve (17") of (*"), take as a trial solu- 
tion, 

-p 
J(W)= e-qW. (61) 

q 
By substitution of the trial solution into (17"), 
a necessary condition that J(W) be a solution 
to (17") is found to be that p and q must satisfy 
the following two algebraic equations: 

q = (62) 

and (r - p - (a-r)2/202 
\~ ~ r / 

p=re (63) 
The resulting optimal decision rules for port- 

folio selection and consumption are, 

C*(t) = rW(t) + [ p - r + (a-r)2/2u2 ] 
(64) 

and 
(a-r') 

w*() = (65) 
rU2W (t) 

Comparing equations (64) and (65) with 

their counterparts for the constant relative risk- 
aversion case, (42) and (43), one finds that 
consumption is no longer a constant proportion 
of wealth (i.e., marginal propensity to consume 
does not equal the average propensity) al- 
though it is still linear in wealth. Instead of the 
proportion of wealth invested in the risky asset 
being constant (i.e., w* (t) a constant), the 
total dollar value of wealth invested in the 
risky asset is kept constant (i.e., w*(t)W(t) 
a constant). As one becomes wealthier, the 
proportion of his wealth invested in the risky 
asset falls, and asymptotically, as W -> oo, one 
invests all his wealth in the certain asset and 
consumes all his (certain) income. Although 
one can do the same type of comparative statics 
for this utility function as was done in section 
VII for the case of constant relative risk-aver- 
sion, it will not be done in this paper for the 
sake of brevity and because I find this special 
form of the utility function behaviorially less 
plausible than constant relative risk aversion. 
It is interesting to note that the substitution 

effect in this case, [ a I ; is zero except 

when r = 0. 

X Other Extensions of the Model 
The requirements for the general class of 

probability distributions which could be accept- 
able in this model are, 

(1) the stochastic process must be Markov- 
ian. 

(2) the first two moments of the distribution 
must be O(At) and the higher-order 
moments o (At) where o (.) is the order 
symbol meaning "smaller order than." 

So, for example, the simple Wiener process pos- 
tulated in this model could be generalized to 
include a, = a, (X1, . .. , Xm,W,t) and = = 
(X1, ... , Xm,W,t), where Xi is the price of the 
ith asset. In this case, there will be (m + 1) 
state variables and (17') will be generated 
from the general Taylor series expansion of 
I[X212 ... , Xm,W,t] for many variables. A 
particular example would be if the ith asset is a 
bond which fluctuates in price for t < ti, but 
will be called at a fixed price at time t = ti. 
Then at = a,(Xi,t) and c- = ai(Xi,t) > 0 when 
t < ti and crq = 0 for t > ti. 

A more general production function of a neo- 
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classical type could be introduced to replace 
the simple linear one of this model. Mirrlees 
[5] has examined this case in the context of a 
growth model with Harrod-neutral technical 
progress a random variable. His equations 
(19) and (20) correspond to my equations 
(35) and (37) with the obvious proper substi- 
tutions for variables. 

Thus, the technique employed for this model 
can be extended to a wide class of economic 
models. However, because the optimality equa- 
tions involve a partial differential equation, 
computational solution of even a slightly gen- 
eralized model may be quite difficult. 
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