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Abstract

Reinforcement learning from human feedback
(RLHF) is effective at aligning large language
models (LLMs) to human preferences, but gath-
ering high-quality human preference labels is
a key bottleneck. We conduct a head-to-head
comparison of RLHF vs. RL from AI Feed-
back (RLAIF) - a technique where preferences
are labeled by an off-the-shelf LLM in lieu of
humans, and we find that they result in similar
improvements. On the task of summarization,
human evaluators prefer generations from both
RLAIF and RLHF over a baseline supervised
fine-tuned model in ∼70% of cases. Further-
more, when asked to rate RLAIF vs. RLHF
summaries, humans prefer both at equal rates.
These results suggest that RLAIF can yield
human-level performance, offering a potential
solution to the scalability limitations of RLHF.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) is an effective technique for aligning lan-
guage models to human preferences (Stiennon
et al., 2020; Ouyang et al., 2022) and is cited as
one of the key drivers of success in modern conver-
sational language models like ChatGPT and Bard
(Liu et al., 2023; Manyika, 2023). By training
with reinforcement learning (RL), language mod-
els can be optimized on complex, sequence-level
objectives that are not easily differentiable with
traditional supervised fine-tuning.

The need for high-quality human labels is an
obstacle for scaling up RLHF, and one natural
question is whether artificially generated labels can
achieve comparable results. Several works have
shown that large language models (LLMs) exhibit
a high degree of alignment with human judgment -
even outperforming humans on some tasks (Gilardi
et al., 2023; Ding et al., 2023). Bai et al. (2022b)
was the first to explore using AI preferences to
train a reward model used for RL fine-tuning - a

Figure 1: Human evaluators strongly prefer RLHF and
RLAIF summaries over the supervised fine-tuned (SFT)
baseline. The differences in win rates between RLAIF vs.
SFT and RLHF vs. SFT are not statistically significant.
Additionally, when compared head-to-head, RLAIF is
equally preferred to RLHF by human evaluators. Error
bars denote 95% confidence intervals.

technique called "Reinforcement Learning from
AI Feedback" (RLAIF)1. While they showed that
utilizing a hybrid of human and AI preferences
in conjunction with the "Constitutional AI" self-
revision technique outperforms a supervised fine-
tuned baseline, their work did not directly compare
the efficacy of human vs. AI feedback, leaving
the question unanswered whether RLAIF can be a
suitable alternative to RLHF.

In this work, we directly compare RLAIF against
RLHF on the task of summarization. Given a text
and two candidate responses, we assign a prefer-
ence label using an off-the-shelf LLM. We then
train a reward model (RM) on the LLM prefer-
ences with a contrastive loss. Finally, we fine-tune
a policy model with reinforcement learning, using

1We use "RLAIF" to denote training a reward model on AI-
labeled preferences followed by conducting RL fine-tuning.
This is distinct from "Constitutional AI", which improves
upon a supervised learning model through iteratively asking an
LLM to generate better responses according to a constitution.
Both were introduced in Bai et al. (2022b) and are sometimes
confused for one another.

ar
X

iv
:2

30
9.

00
26

7v
1 

 [
cs

.C
L

] 
 1

 S
ep

 2
02

3



Figure 2: A diagram depicting RLAIF (top) vs. RLHF (bottom)

the RM to provide rewards.
Our results show that RLAIF achieves compara-

ble performance to RLHF, measured in two ways.
First, we observe that both RLAIF and RLHF poli-
cies are preferred by humans over a supervised
fine-tuned (SFT) baseline 71% and 73% of the
time, respectively, and the two win rates are not
statistically significantly different. Second, when
asked to directly compare generations from RLAIF
vs. RLHF, humans prefer both at equal rates (i.e.
50% win rate). These results suggest that RLAIF is
a viable alternative to RLHF that does not depend
on human annotation and offers appealing scaling
properties.

Additionally, we study techniques to maximize
the alignment of AI-generated preferences with hu-
man preferences. We find that prompting our LLM
with detailed instructions and soliciting chain-of-
thought reasoning improve alignment. Surprisingly,
we observe that both few-shot in-context learning
and self-consistency - a process in which we sam-
ple multiple chain-of-thought rationales and aver-
age the final preferences - do not improve accuracy
or even degrade it. Finally, we conduct scaling
experiments to quantify the trade-offs between the
size of the LLM labeler and the number of prefer-
ence examples used in training vs. alignment with
human preferences.

Our main contributions are the following:

• We demonstrate that RLAIF achieves com-
parable performance to RLHF on the task of
summarization

• We compare various techniques for generat-
ing AI labels and identify optimal settings for
RLAIF practitioners

2 Preliminaries

We first review the RLHF pipeline introduced in
Stiennon et al. (2020); Ouyang et al. (2022), which
consists of 3 phases: supervised fine-tuning, reward
model training, and reinforcement learning-based
fine-tuning.

2.1 Supervised Fine-tuning
A pre-trained LLM is fine-tuned on a high qual-
ity labeled dataset for a downstream task using
token-level supervision to produce a supervised
fine-tuned (SFT) model πSFT .

2.2 Reward Modeling
Given an input x, we sample a pair of responses
from one or more models (y1, y2) ∼ π, where of-
tentimes the SFT model is used. The input and
responses are sent to human annotators to rate
which response is better according to some cri-
teria. These annotations form a dataset of triplets
D = {(x, yw, yl)}, where yw and yl are the pre-
ferred and non-preferred responses, respectively.
A reward model rϕ is trained by minimizing the
following loss:

Lr(ϕ) = −E
(x,yw,yl)∼D

[log σ(rϕ(x, yw)− rϕ(x, yl))]

where σ is the sigmoid function.



Preamble A good summary is a shorter piece of text that has the
essence of the original. ... Given a piece of text and two
of its possible summaries, output 1 or 2 to indicate which
summary best adheres to coherence, accuracy, coverage, and
overall quality as defined above.

1-Shot Exemplar »»»» Example »»»»

Text - We were best friends over 4 years ...
Summary 1 - Broke up with best friend, should I wish her a
happy birthday... And what do you think of no contact?
Summary 2 - should I wish my ex happy birthday, I broke no
contact, I’m trying to be more patient, I’m too needy, and I
don’t want her to think I’ll keep being that guy.

Preferred Summary=1

»»»» Follow the instructions and the example(s) above »»»»

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Preferred Summary=

Table 1: An example of a prompt fed to an off-the-shelf LLM to generate AI preference labels. "{text}", "{sum-
mary1}", and "{summary2}" are populated with unlabeled examples, and a preference distribution is obtained by
computing the softmax of the log probabilities of generating the tokens "1" vs. "2".

2.3 Reinforcement Learning
A policy πRLθ is initialized from the SFT model
weights and then optimized with reinforcement
learning to maximize the reward given by the RM,
which serves as a proxy for human preferences.
Optionally, a Kullback-Leibler (KL) divergence
loss DKL is added to the objective to penalize πRLθ
for deviating from the original SFT policy πSFT ,
controlled by the hyperparameter β - a technique
similar to natural policy gradients (Kakade, 2001).
The KL loss helps prevent πRLθ from drifting into
a region where it generates language that is highly
rewarded by the RM yet consists of low-quality or
unnatural language - a phenomenon known as "re-
ward hacking" (Everitt and Hutter, 2016; Amodei
et al., 2016). The full optimization objective is
described by the equation below:

max
θ

E[rϕ(y|x)− βDKL(πRLθ (y|x)||πSFT (y|x))]

3 RLAIF Methodology

In this section, we describe the techniques used to
generate preference labels with an LLM, how we
conduct RL, and evaluation metrics.

3.1 Preference Labeling with LLMs
We annotate preferences among pairs of candidates
with an "off-the-shelf" LLM, which is a model

pre-trained or instruction-tuned for general usage
but not fine-tuned for a specific downstream task.
Given a piece of text and two candidate summaries,
the LLM is asked to rate which summary is bet-
ter. The input to the LLM is structured as follows
(example in Table 1):

1. Preamble - Introduction and instructions de-
scribing the task at hand

2. Few-shot exemplars (optional) - An example
of a text, a pair of summaries, a chain-of-
thought rationale (if applicable), and a prefer-
ence judgment

3. Sample to annotate - A text and a pair of sum-
maries to be labeled

4. Ending - An ending string to prompt the LLM
(e.g. "Preferred Summary=")

After the LLM is given the input, we obtain the
log probabilities of generating the tokens "1" and
"2" and compute the softmax to derive a preference
distribution.

There are numerous alternatives to obtain pref-
erence labels from LLMs, such as decoding a free-
form response from the model and extracting the
preference heuristically (e.g. output = "The first
summary is better"), or representing the preference
distribution as a one-hot representation. However,



we did not experiment with these alternatives be-
cause our approach already yielded high accuracy.

We experiment with two types of preambles:
"Base", which briefly asks "which summary is bet-
ter?", and "OpenAI", which closely mimics the
rating instructions given to the human preference
annotators that generated the OpenAI TL;DR pref-
erence dataset and contains detailed information
about what constitutes a strong summary (Stiennon
et al., 2020). See Appendix Table 6 for full pream-
bles. We also experiment with in-context learning
by adding few-shot exemplars in the prompt, where
exemplars were manually selected to cover differ-
ent topics.

3.1.1 Addressing Position Bias

The order in which candidates are shown to
the LLM can bias which candidate it prefers
(Pezeshkpour and Hruschka, 2023). We find ev-
idence that such a position bias exists, especially
with smaller sizes of LLM labelers (see Appendix
A).

To mitigate position bias in preference labeling,
we make two inferences for every pair of candi-
dates, where the order in which candidates are pre-
sented to the LLM is reversed for the second in-
ference. The results from both inferences are then
averaged to obtain the final preference distribution.

3.1.2 Chain-of-thought Reasoning

We experiment with eliciting chain-of-thought
(COT) reasoning from our AI labelers to improve
alignment with human preferences (Wei et al.,
2022). We replace the Ending of the standard
prompt (i.e. "Preferred Summary=") with "Con-
sider the coherence, accuracy, coverage, and over-
all quality of each summary and explain which one
is better. Rationale:" and then decode a response
from the LLM. Finally, we concatenate the origi-
nal prompt, the response, and the original Ending
string "Preferred Summary=" together, and follow
the scoring procedure in Section 3.1 to obtain a
preference distribution. See Figure 3 for an illus-
tration.

In zero-shot prompts, the LLM is not given an
example of what reasoning should look like, while
in few-shot prompts, we provide examples of COT
reasoning for the model to follow. See Tables 7 and
8 for examples.

3.1.3 Self-Consistency
For chain-of-thought prompts, we also experiment
with self-consistency - a technique to improve upon
chain-of-thought reasoning by sampling multiple
reasoning paths and aggregating the final answer
produced at the end of each path (Wang et al.,
2022). Multiple chain-of-thought rationales are
sampled with a non-zero decoding temperature,
and then LLM preference distributions are obtained
for each one - following the approach in Section
3.1.2. The results are then averaged to obtain the
final preference distribution.

3.2 Reinforcement Learning from AI
Feedback

After preferences are labeled by the LLM, a re-
ward model (RM) is trained to predict prefer-
ences. Since our approach produces soft labels
(e.g. preferencesi = [0.6, 0.4]), we apply a
cross-entropy loss to the softmax of the reward
scores generated by the RM instead of the loss
mentioned in Section 2.2. The softmax converts
the unbounded scores from the RM into a probabil-
ity distribution.

Training a RM on a dataset of AI labels can be
viewed as a form of model distillation, especially
since our AI labeler is often larger and more pow-
erful than our RM. An alternative approach is to
bypass the RM and use AI feedback directly as a
reward signal in RL, though this approach is more
computationally expensive since the AI labeler is
larger than the RM.

With the trained RM, we conduct reinforcement
learning with a modified version of the Advantage
Actor Critic (A2C) algorithm adapted to the lan-
guage modeling domain (Mnih et al., 2016) (de-
tails in Appendix B). While many recent works use
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) - a similar method that adds a few
techniques to make training more conservative and
stable (e.g. clipping the objective function), we uti-
lize A2C given that it is simpler yet still effective
for our problem.

3.3 Evaluation

We evaluate our results with three metrics - AI
Labeler Alignment, Pairwise Accuracy, and Win
Rate.

AI Labeler Alignment measures the accuracy of
AI-labeled preferences with respect to human pref-
erences. For a single example, it is calculated by



Figure 3: To derive an AI preference label, the LLM is first prompted to verbally explain its thoughts on the quality
of the two candidates (blue). The LLM response is then appended to the original prompt (orange) and fed to the
LLM a second time to generate a preference distribution over "1" vs. "2" based on their log probabilities (green).

converting a soft AI-labeled preference to a binary
representation (e.g. preferencesi = [0.6, 0.4] →
[1, 0]), and then assigning a 1 if the label agrees
with the target human preference and 0 otherwise.
It can be expressed as follows:

Align =

∑D
i=1 1[argmaxx praii = argmaxx prhi ]

|D|

where prai and ph are binary representations of AI
and human preferences, respectively, x is an index,
and D is a dataset.

Pairwise Accuracy measures how accurate a
trained reward model is with respect to a held-out
set of human preferences. Given a shared context
and pair of candidate responses, the Pairwise Accu-
racy is 1 if the RM scores the preferred candidate
higher than the non-preferred candidate, accord-
ing to the human label. Otherwise the value is 0.
This quantity is averaged over multiple examples
to measure the total accuracy of the RM.

Win Rate evaluates the end-to-end quality of two
policies by measuring how often one policy is pre-
ferred by humans over another one. Given an in-
put and two generations, human annotators select
which generation is preferred. The percentage of
instances where policy A is preferred over policy
B is referred to as the "Win Rate of A vs. B".

4 Experimental Details

4.1 Datasets

Following the work of Stiennon et al. (2020), we
use the filtered Reddit TL;DR dataset curated by
OpenAI. TL;DR contains ∼3 million posts from
Reddit2 across a variety of topics (also known as
"subreddits") alongside summaries of the posts
written by the original authors. The data is addi-
tionally filtered by OpenAI to ensure high quality,
which includes using a whitelist of subreddits that
are understandable to the general population. Ad-
ditionally, only posts where the summaries contain
between 24 and 48 tokens are included. The fil-
tered dataset contains 123,169 posts, where ∼5%
is held out as a validation set. More details on the
dataset can be found in the original paper.

Additionally, OpenAI curated a human prefer-
ence dataset from the filtered TL;DR dataset. For
a given post, two candidate summaries were gen-
erated from different policies, and labelers were
asked to rate which summary they preferred. The
total dataset comprises ∼92k pairwise compar-
isons.

4.2 LLM Labeling

For evaluating the efficacy of AI labeling tech-
niques (e.g. prompting, self-consistency), we se-
lect examples from the TL;DR preference dataset
where human annotators preferred one summary

2www.reddit.com

www.reddit.com


over the other with higher confidence3. We evalu-
ate AI Labeler Alignment on a random 15% subset
of the training split of the dataset to enable faster
experiment iteration, yielding 2851 examples for
evaluation. For reward model training, the full
training split of the TL;DR preference dataset is la-
beled by the LLM and used for training - regardless
of confidence scores.

We use PaLM 2 as our LLM for labeling pref-
erences (Google et al., 2023). Unless otherwise
specified, we use the Large model size with a max-
imum context length of 4096 tokens. For chain-of-
thought generation, we set a maximum decoding
length of 512 tokens and sample with temperature
T = 0 (i.e. greedy decoding). For self-consistency
experiments, we use temperature T = 1 with top-K
sampling (Fan et al., 2018), where K = 40.

4.3 Model Training

We train a SFT model on OpenAI’s filtered TL;DR
dataset, using PaLM 2 Extra-Small (XS) as our
initial checkpoint.

We then initialize our RMs from the SFT model
and train them on OpenAI’s TL;DR human pref-
erence dataset. For the results in Section Table 1
and 5.1, we generate AI-labeled preferences us-
ing PaLM 2 L, using the "OpenAI + COT 0-shot"
prompt (see Section 5.2) without self consistency,
and then train the RM on the full preference dataset.

For reinforcement learning, we train the policy
with Advantage Actor Critic (A2C) as described
in Appendix B. Both policy and value models are
initialized from the SFT model. We rollout our
policies using the filtered Reddit TL;DR dataset as
our initial states.

For more training details, see Appendix C.

4.4 Human Evaluation

We collected 1200 ratings from humans to evalu-
ate RLHF and RLAIF policies. For each rating
task, the evaluator was presented with a post and 4
summaries generated from different policies (one
from each of RLAIF, RLHF, SFT, and Human Ref-
erence) and asked to rank them in order of quality
without ties. Posts were drawn from the held-out
set of the TL;DR supervised fine-tuning dataset,
which was not used in any other evaluation. Once
these rankings were collected, it was possible to
calculate win rates with respect to any two policies.

3This follows the evaluation procedure in Stiennon et al.
(2020)

5 Results

5.1 RLAIF vs. RLHF

Our results show that RLAIF achieves similar per-
formance to RLHF (see Table 1). RLAIF is pre-
ferred by human evaluators over the baseline SFT
policy 71% of the time. In comparison, RLHF is
preferred over SFT 73% of the time. While RLHF
slightly outperforms RLAIF, the difference is not
statistically significant4. We also directly compare
the win rate of RLAIF vs. RLHF and find that they
are equally preferred - i.e. the win rate is 50%. To
better understand how RLAIF compares to RLHF,
we qualitatively compare summaries generated by
both policies in Section 6.

We also compare RLAIF and RLHF summaries
vs. human-written reference summaries. RLAIF
summaries are preferred over the reference sum-
maries 79% of the time, and RLHF are preferred
over the reference summaries 80% of the time. The
difference in win rates between RLAIF and RLHF
vs. the reference summaries is also not statistically
significant.

One confounding factor in our results is that our
RLAIF and RLHF policies tend to generate longer
summaries than the SFT policy, which can account
for some of the quality improvements. Similar to
Stiennon et al. (2020), we conduct post-hoc analy-
sis that suggests that while both RLAIF and RLHF
policies benefit from producing longer summaries,
both still outperform the SFT policy by a similar
margin after controlling for length. Full details in
Appendix D.

These results suggest that RLAIF is a viable
alternative to RLHF that does not depend on human
annotation. To understand how well these findings
generalize to other NLP tasks, experiments on a
broader range of tasks are required, which we leave
to future work.

5.2 Prompting Techniques

We experiment with three types of prompting tech-
niques - preamble specificity, chain-of-thought rea-
soning, and few-shot in-context learning - and re-
port the results in Table 2.

Using the detailed OpenAI preamble improves
alignment +1.3% (77.4% "OpenAI 0-shot" vs.
76.1% "Base 0-shot"), and chain-of-thought rea-
soning improves alignment +1.4% (77.5% "Base +

4When conducting a two-sample t-test, p-value = 0.25,
which is greater than 0.05. Therefore, we cannot reject the
null hypothesis.



Figure 4: Example summaries generated by SFT, RLHF and RLAIF policies for a Reddit post. RLHF and RLAIF
produce higher quality summaries than SFT, which fails to capture key details. Salient details are bolded.

Prompt AI Labeler Alignment
Base 0-shot 76.1%
Base 1-shot 76.0%
Base 2-shot 75.7%
Base + COT 0-shot 77.5%
OpenAI 0-shot 77.4%
OpenAI 1-shot 76.2%
OpenAI 2-shot 76.3%
OpenAI 8-shot 69.8%
OpenAI + COT 0-shot 78.0%
OpenAI + COT 1-shot 77.4%
OpenAI + COT 2-shot 76.8%

Table 2: We observe that prompting with the detailed
OpenAI preamble and eliciting chain-of-thought reason-
ing gives the highest AI Labeler Alignment. In-context
learning does not improve accuracy, and possibly even
makes it worse.

COT 0-shot" vs. 76.1% "Base 0-shot"). Though the
improvement from combining the two techniques
does not match the sum of their individual gains,
the techniques are still complementary, together
yielding +1.9% improvement.

We observe that few-shot in-context learning
does not improve alignment, even potentially de-
grading it. For "OpenAI + COT k-shot" prompts,
we see accuracy monotonically decrease as k in-
creases from 0 to 2. One hypothesis is that the LLM
is able to generate more useful chain-of-thought
rationales on its own than when it follows the ratio-
nales given in our 1-shot and 2-shot exemplars (see
Table 9 for examples).

To understand if adding more exemplars might

yield improvements, we experimented with an 8-
shot prompt and found that accuracy decreased by
-7.6% (69.8% "OpenAI 8-shot" vs. 77.4% "OpenAI
0-shot"). We verified that all examples used in
this experiment fit within our AI labeler’s context
length.

Overall, we observe that the optimal configura-
tion employs a detailed preamble, chain-of-thought
reasoning, and no in-context learning ("OpenAI +
COT 0-shot"). This combination achieves an AI La-
beler Alignment of 78.0%, which is +1.9% higher
than using our most basic prompt ("Base 0-shot").
As a point of comparison, Stiennon et al. (2020) es-
timated that human inter-annotator agreement was
73-77% on the human preference dataset, suggest-
ing that our LLM performs rather well. We use
the "OpenAI + COT 0-shot" prompt for all other
experiments.

5.3 Self-Consistency

Self-Consistency AI Labeler Alignment
1 sample, T=0 78.0%
4 samples, T=1 72.6%
16 samples, T=1 72.8%

Table 3: Sampling several chain-of-thought rationales
with T = 1 results in lower alignment with human pref-
erences. Note: 1, 4, and 16 samples represent 2, 8, and
32 inferences given our position de-biasing technique
(see Section 3.1.1).

We experiment with self-consistency using 4 and
16 samples with decoding temperature of 1 as de-
scribed in Section 3.1.3, and both settings show



drops in alignment of greater than -5% versus not
using self-consistency. Manually inspecting chain-
of-thought rationales did not reveal any common
patterns for why self-consistency might result in
lower accuracy (see examples in Table 10).

One hypothesis for the degradation in accuracy
is that using a temperature of 1 leads the model to
generate lower quality chain-of-thought rationales
compared to greedy decoding, ultimately leading
to worse accuracy overall. Using a temperature
between 0 and 1 may yield better results.

5.4 Size of LLM Labeler

Model Size AI Labeler Alignment
PaLM 2 XS 62.7%
PaLM 2 S 73.8%
PaLM 2 L 78.0%

Table 4: AI Labeler Alignment increases as the size of
the LLM labeler increases.

Large model sizes are not widely accessible and
can be slow and expensive to run. We experiment
with labeling preferences with different model sizes
and observe a strong relationship between align-
ment and size. Alignment drops -4.2% when mov-
ing from PaLM 2 Large (L) down to PaLM 2 Small
(S), and it drops another -11.1% when moving
down to PaLM 2 XS. This trend is consistent with
scaling laws observed in other work (Kaplan et al.,
2020). One contributing factor to the decline in
performance could be the increase in position bias
in smaller LLMs (see Appendix A).

On the end of this trend, these results also sug-
gest that scaling up AI labeler size may produce
even higher quality preference labels. Since the AI
labeler is only used to generate preference exam-
ples once and is not queried during RL training,
using an even larger AI labeler is not necessarily
prohibitively expensive. Furthermore, Section 5.5
suggests that a small number of examples may be
sufficient to train a powerful RM (e.g. on the or-
der of O(1k)), further reducing the costs of using a
larger labeler model.

5.5 Number of Preference Examples

To understand how RM accuracy changes with the
number of training examples, we train a RM on
varying amounts of AI-labeled preference exam-
ples and evaluate Pairwise Accuracy on a held-
out set of human preferences. We obtain different

Figure 5: RM accuracy on a held-out set of human
preferences increases rapidly as more preference pairs
are used in training. After training on a few thousand
examples, performance is close to training on the full
dataset. The x-axis is in log-scale.

amounts of training examples by randomly sub-
sampling the full preference datasets. Results are
displayed in Figure 5.

We observe that the performance of the AI pref-
erence RM quickly plateaus after training on a few
thousand examples. The RM achieves ∼60% ac-
curacy when training on only 128 examples and
then reaches an accuracy close to that of training
on the full dataset when training with only 5,000
examples (roughly 1

20 of the full dataset).
We also conduct a parallel set of experiments

on a RM trained on human preferences. We find
that the human and AI RMs follow similar scaling
curves. One difference is that the human preference
RM appears to continually improve as the number
of training examples increases, though more train-
ing examples only bring small improvements to
accuracy. This trend suggests that RMs trained on
AI preferences may not benefit as much from scal-
ing up the number of training examples as RMs
trained on human preferences.

Given the limited improvement from scaling up
the number of AI preference examples, more re-
sources may be better spent on labeling with larger
model sizes (see Section 5.4) rather than labeling
more preference examples.

6 Qualitative Analysis

To better understand how RLAIF compares to
RLHF, we manually inspected summaries gener-
ated by both policies. In many cases, the two poli-
cies produced similar summaries, which is reflected
in their similar win rates (see Section 5.1). How-
ever, we identified two patterns where they fre-



quently diverged.
One pattern we observed is that RLAIF appears

less likely to hallucinate than RLHF. The hallucina-
tions in RLHF are often plausible but are inconsis-
tent with the original text. For instance, in Example
#1 of Table 11, the RLHF summary states that the
author is 20 years old, but this is not mentioned or
implied by the original text.

Another pattern we observed is that RLAIF
sometimes produces less coherent or grammatical
summaries than RLHF. For instance, in Example #1
of Table 12, the RLAIF summary produces run-on
sentences.

Overall, while we observe certain tendencies for
each policy, both produce high-quality summaries
that are relatively similar.

7 Related Work

LLMs (Brown et al., 2020; Thoppilan et al., 2022;
Chowdhery et al., 2022; Google et al., 2023; Ope-
nAI, 2023) have shown impressive performance
over a wide range of NLP tasks. For several of
these tasks, RL has emerged as an effective opti-
mization technique. While initial applications of
RL on tasks such as translation (Wu et al., 2016,
2018) and summarization (Gao et al., 2019; Wu
and Hu, 2018) used automatic evaluation metrics
as rewards, such simplified formulations of rewards
did not fully align with human notions of quality.

Reinforcement learning from human feedback
Christiano et al. (2017) has been used as a tech-
nique to directly align LLMs with human prefer-
ences (Ziegler et al., 2019) by training a reward
model on pairwise comparisons of natural language
responses, and has been successfully applied for
summarization (Stiennon et al., 2020), general-
ized instruction following (Ouyang et al., 2022;
Lai et al., 2023), dialogue (Gilardi et al., 2023;
Manyika, 2023; Glaese et al., 2022; Bai et al.,
2022a) and question answering (Nakano et al.,
2021).

LLMs have also been extensively used for data
generation (Wang et al., 2021; Meng et al., 2023),
augmentation (Feng et al., 2021) and in self-
training setups (Wang et al., 2022; Madaan et al.,
2023). Bai et al. (2022b) introduced the idea of
RL from AI feedback (RLAIF), which used LLM
labeled preferences in conjunction with human la-
beled preferences to jointly optimize for the two
conflicting objectives of helpfulness and harmless-
ness. Recent works have also explored related tech-

niques for generating rewards from LLMs (Roit
et al., 2023; Kwon et al., 2022; Yang et al., 2023).
These works demonstrate that LLMs can generate
useful signals for RL fine-tuning, which inspired
this work’s investigation into whether LLMs can
serve as a viable alternative to humans in collecting
preference labels for reinforcement learning.

8 Conclusion

In this work, we show that RLAIF can produce
comparable improvements to RLHF without de-
pending on human annotators. Our experiments
show that RLAIF greatly improves upon a SFT
baseline, and the margin of improvement is on par
with that of RLHF. In head-to-head comparisons,
RLAIF and RLHF are preferred at similar rates by
humans. We also study various AI labeling tech-
niques and conduct scaling studies to understand
the optimal settings for generating aligned prefer-
ences.

While this work highlights the potential of
RLAIF, we note some limitations of these findings.
First, this work only explores the task of summa-
rization, leaving an open question about generaliz-
ability to other tasks. Second, we did not estimate
whether LLM inference is advantageous versus hu-
man labeling in terms of monetary costs. Addition-
ally, there remain many interesting open questions,
such as whether RLHF combined with RLAIF can
outperform a single approach alone, how well us-
ing a LLM to directly assign rewards performs,
whether improving AI Labeler Alignment trans-
lates to improved final policies, and whether using a
LLM labeler the same size as the policy model can
further improve the policy (i.e. whether a model
can "self-improve"). We leave these questions for
future work.

We hope that this paper motivates further re-
search in the area of RLAIF.
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A Position Bias in LLM Labelers

Model Size % Same Position Preferred
PaLM 2 L 18%
PaLM 2 S 21%
PaLM 2 XS 56%

Table 5: Position bias is more prevalent in smaller model
sizes, as indicated by "% Same Position Preferred",
which measures the percentage of examples where the
LLM prefers the same position even after swapping the
order of candidates. Analysis is conducted using the
"OpenAI + COT 0-shot" prompt.

Our analysis suggests that the LLMs used for
preference labeling are biased by the order in which

candidates are shown. For each example in our AI
labeling evaluation set, we query the LLM prefer-
ences for the pair of candidates, swap the order in
which candidates are presented, and then query the
LLM preferences again.

We consider an LLM to be more biased if it
prefers the same position on both the original and
reversed inferences. For example, let candidates
A and B be in positions 1 and 2 for the first infer-
ence and then in positions 2 and 1 for the second,
respectively. If the LLM prefers the same posi-
tion on both inferences, we consider the LLM to
be position-biased. We measure position bias by
computing "% Same Position Preferred" - the per-
centage of inference pairs where this occurs, and a
higher metric value indicates a more biased LLM.

We find that PaLM 2 L, S, and XS prefer the
same position 18%, 21%, and 56% of the time, re-
spectively (see Table 5), suggesting that position
bias is inversely proportional to model size. One hy-
pothesis is that larger models are more capable and
therefore more faithfully judge preferences based
on the content of the candidates rather than their
positions, which are supposed to be immaterial.

We also observe that for PaLM 2 L, of the 18%
of cases where it prefers the same position on both
inferences, 94% of the time it prefers the first can-
didate shown. On the other hand, PaLM 2 S and
XS show affinity for the second candidate shown,
preferring it 91% and 99% of the time, respectively,
when the same position is preferred on both in-
ferences. These biases are statistically significant
under a two-sided binomial test at α = 0.05.

B A2C for Language Models

Consider a generic MDP (X ,A, R, P, γ). At each
step t, given the current state Xt ∈ X and the
next action At ∈ A, the model receives a reward
Rt = R(Xt, At) and transitions to the next state
Xt+1 = (Xt, At).

In the context of language models, Xt is the con-
catenation of the input text and all text the policy
has generated up to time t. Action At is the token
decoded at time t by the stochastic policy πθ(·|Xt)
from the considered vocabulary, where θ represents
the policy parameters. Finally, the reward Rt is
given by the RM. The RM is only evaluated when
the language model response has been fully gener-
ated, and therefore all rewards before the last token
are 0 while the reward corresponding to the final
token is RTlast .
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The cumulative sum of rewards received when
following the policy π from a state-action pair
(Xt = x,At = a) is called the return. Gener-
ally, it is defined as Zπx,a =

∑Tlast
s=t γ

s−tRs. How-
ever, since only the terminal reward is non-zero
and we use γ = 1, the return can be simplified to
Zπx,a = RTlast .

Given a trajectory (Xt, At, Rt)
Tlast
t=0 generated

under πθ, the Advantage Actor Critic estimator is
defined as follows:

LA2C =
∑
t≥0

log πθ(At|Xt)
(
RTlast − V π

ψ (Xt)
)

where the bar notation denotes that no gradient
is passed through the advantage term during the
policy training phase.

The baseline value function V π
ψ (x) estimates the

return-to-go RTlast when following the policy πθ
and is parametrized by ψ (Williams, 1992; Sutton
et al., 1999). It is trained with the following loss:

Lbaseline =
∑
t

(RTlast − V π
ψ (Xt))

2

C Model Training Details

We train a SFT model with a batch size of 128 for
a single epoch. We use the Adafactor (Shazeer and
Stern, 2018) optimizer with a learning rate of 10−5,
and we set a maximum input and output length of
1024 and 128 tokens, respectively.

Each RM is trained for 3 epochs, which is when
loss and accuracy curves plateau. We use the
Adafactor optimizer with a learning rate of 10−5

and a batch size of 128.
For reinforcement learning, we sample from our

language model policies with a temperature of T =
0.9 to encourage exploration. We train with a batch
size of 128 and learning rate of 10−5 for 8 epochs,
resulting in ∼1 million episodes. We set β = 0.05
for the KL divergence loss.

D Controlling for Summary Length

Our RLAIF and RLHF policies tend to generate
longer summaries than the baseline SFT policy. For
the summaries sent to human evaluation, the mean
character-length of summaries produced by RLAIF,
RLHF, and SFT policies were 164, 161, and 132,
respectively. We conduct post-hoc analysis to esti-
mate the win rates of RLAIF and RLHF vs. SFT
after controlling for length.

Figure 6: After controlling for summary length, RLAIF
and RLHF policies both still outperform the baseline
SFT policy and achieve similar win rate.

We take an approach similar to Stiennon et al.
(2020). For each of our RL policies, we train a
logistic regression model where the input is the ra-
tio of the RL summary length to the SFT summary
length (in characters) and the target is a binary label
indicating whether RL was preferred to SFT. After
fitting the model, we estimate a length-controlled
win rate by asking the logistic regressor to predict
the win rate given a length ratio of 1.0, which rep-
resents the scenario where both the RL and SFT
summaries are of equal length.

After controlling for length, our estimated win
rates for RLAIF and RLHF vs. SFT are 59% and
61%, respectively (see Figure 6). Both RL policies
continue to outperform the SFT policy by a simi-
lar margin, supporting our initial conclusion that
RLAIF is comparable to RLHF.

We note that this post-hoc method of control-
ling for length is imperfect, as it assumes the lo-
gistic regression model can accurately learn the
relationship between summary length and human
preference. A more principled approach would be
to have all policies generate summaries of similar
length (e.g. by encouraging policies to generate
summaries of a fixed length during optimization).



"Base" preamble You are an expert summary rater. Given a piece of text and
two of its possible summaries, output 1 or 2 to indicate
which summary is better.

"OpenAI" preamble A good summary is a shorter piece of text that has the
essence of the original. It tries to accomplish the same
purpose and conveys the key information from the original
post. Below we define four evaluation axes for summary
quality: coherence, accuracy, coverage, and overall quality.

Coherence: This axis answers the question “how coherent is
the summary on its own?” A summary is coherent if it’s easy
to understand when read on its own and free of English errors.
A summary is not coherent if it’s difficult to understand
what the summary is trying to say. Generally, it’s more
important that the summary is understandable than it being
free of grammar errors.

Accuracy: This axis answers the question “does the factual
information in the summary accurately match the post?” A
summary is accurate if it doesn’t say things that aren’t in
the article, it doesn’t mix up people, and generally is not
misleading.

Coverage: This axis answers the question “how well does
the summary cover the important information in the post?” A
summary has good coverage if it mentions the main information
from the post that’s important to understand the situation
described in the post. A summary has poor coverage if
someone reading only the summary would be missing several
important pieces of information about the situation in the
post. A summary with good coverage should also match the
purpose of the original post (e.g. to ask for advice).

Overall quality: This axis answers the question “how good
is the summary overall at representing the post?” This can
encompass all of the above axes of quality, as well as others
you feel are important. If it’s hard to find ways to make
the summary better, the overall quality is good. If there
are lots of different ways the summary can be made better,
the overall quality is bad.

You are an expert summary rater. Given a piece of text and
two of its possible summaries, output 1 or 2 to indicate
which summary best adheres to coherence, accuracy, coverage,
and overall quality as defined above.

Table 6: The "Base" and "OpenAI" preambles given to the LLM labeler to obtain preference labels.

Preamble A good summary is a shorter piece of text that has the
essence of the original. ... Given a piece of text and
two of its possible summaries, explain which summary best
adheres to coherence, accuracy, coverage, and overall quality
as defined above.

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Consider the coherence, accuracy, coverage, and overall
quality of each summary and explain which one is better.

Rationale:

Table 7: The template used for the "OpenAI + COT 0-shot" prompt, with some text removed for brevity. For COT
prompts, we first decode a response from the LLM and then concatenate it with the original prompt and the ending
"Preferred Summary=" before following the scoring procedure in Section 3.1 to obtain a preference distribution.



Preamble A good summary is a shorter piece of text that has the
essence of the original. ... Given a piece of text and
two of its possible summaries, explain which summary best
adheres to coherence, accuracy, coverage, and overall quality
as defined above.

1-shot Exemplar »»»» Example »»»»

Text - We were best friends over 4 years ...
Summary 1 - Broke up with best friend, should I wish her a
happy birthday... And what do you think of no contact?
Summary 2 - should I wish my ex happy birthday, I broke no
contact, I’m trying to be more patient, I’m too needy, and I
don’t want her to think I’ll keep being that guy.

Thoughts on Summary 1 -
Coherence - 7. Rationale: The summary is generally
understandable, though it could be written with better
grammar.
Accuracy - 9. Rationale: The summary doesn’t say things
that aren’t in the original text, and isn’t misleading.
Coverage - 6. Rationale: The summary covers most of the
important information in the post and conveys the gist of
the original text. However, it places more emphasis on "no
contact" and could have mentioned the smothering/neediness to
be more complete.
Overall Quality - 7. Rationale: The summary represents
the post fairly well with only minor areas where it could be
improved.

Thoughts on Summary 2 -
Coherence - 3. Rationale: The summary is long-winded and
has several grammatical errors.
Accuracy - 4. Rationale: The summary mentions that the
author broke no contact, but this is incorrect. Otherwise,
it is accurate.
Coverage - 8. Rationale: The summary covers the key points
in the original text.
Overall Quality - 4. Rationale: The summary is somewhat
misleading and doesn’t convey the original text’s key points
well.

Preferred Summary=1

»»»» Follow the instructions and the example(s) above »»»»

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Thoughts on Summary 1 -

Table 8: The template used for the "OpenAI + COT 1-shot" prompt, with some text removed for brevity.



Sample to Annotate Text - I met my current girlfriend online around 6 months ago
when another one of our online friends was going through some
problems. ...

However, I feel incredibly insecure as she has yet to begin
college. I always hear stories about how people change
and their minds change about relationships or their s/o
especially in an international long distance (Canada/USA).
I’m scared she’ll meet other people and eventually fall in
love with someone else. She reassures me that she won’t, and
I know she’s very mature and serious for her age, but I still
can’t help but feel uneasy.

Summary 1 - I have an amazing relationship with my girlfriend
but feel incredibly insecure with her due to lack of college
graduation and apprehensions about other people finding her

Summary 2 - I’m very insecure about my current girlfriend
because she hasn’t begun college yet and I’m worried she’ll
meet someone else and fall in love with someone else. Am I
being ridiculous?

COT 0-shot Rationale Rationale: Summary 2 is better.

Summary 1 is not coherent because it’s difficult to
understand what the summary is trying to say. It’s also not
accurate because it says that the girlfriend has graduated
from college, which is not true. Summary 2 is coherent and
accurate. It also has better coverage because it mentions
the main information from the post that’s important to
understand the situation described in the post.

COT 1-shot Rationale Thoughts on Summary 1 -
Coherence - 7. Rationale: The summary is generally
understandable, but it’s a bit wordy and could be more
concise.
Accuracy - 8. Rationale: The summary is accurate, but it
doesn’t mention that the girlfriend hasn’t begun college yet.
Coverage - 7. Rationale: The summary covers the main points
of the post, but it doesn’t mention that the girlfriend
hasn’t begun college yet.
Overall Quality - 7. Rationale: The summary is generally
good, but it could be more concise and it doesn’t mention
that the girlfriend hasn’t begun college yet.

Thoughts on Summary 2 -
Coherence - 9. Rationale: The summary is concise and easy
to understand.
Accuracy - 9. Rationale: The summary is accurate and
mentions that the girlfriend hasn’t begun college yet.
Coverage - 9. Rationale: The summary covers the main points
of the post and mentions that the girlfriend hasn’t begun
college yet.
Overall Quality - 9. Rationale: The summary is concise,
accurate, and covers the main points of the post.

Table 9: An example of the different chain-of-thought rationales produced by the 0-shot ("OpenAI + COT 0-shot")
vs. 1-shot ("OpenAI + COT 1-shot") prompts.



Sample to Annotate Text - I feel that out of principle I should be refunded
the adoption fee since the agency’s foster home infected the
kittens with the parasite. Both cats were born in the foster
home and there are 20 other cats. Do I have any legal right
to ask for the fee back? Or help with the cost of treating?
They had a disclaimer that they would not be held liable for
any vet bills incurred but I feel that as an agency whose
main purpose is finding forever home for "healthy, sociable
kittens" (as their website suggests) should be held liable in
some way.

Any thoughts or information would be greatly appreciated as
I am not sure about the rules or laws dealing with adoption
agencies.

Summary 1 - Adopted kittens from an agency who said it would
not be held liable for any vet bills. Two days later they
are diagnosed with Giardia. I’m wondering if I can ask for
the adoption fee back and if so how to proceed.

Summary 2 - Adopted kittens have parasite. Want to know if
I can get reimbursed from the agency.

Rationale @ T = 0 Rationale: Summary 1 is better. It is coherent, accurate,
and has good coverage. It also has good overall quality.
Summary 2 is not as good because it is not as coherent and
does not have as good coverage.

Rationale @ T = 1 Rationale: Summary 2 is more coherent and accurate. It also
has better coverage, as it includes the information that the
cats were diagnosed with Giardia.

Table 10: An example comparing chain-of-thought rationales produced at different temperatures for self-consistency
experiments.

Example #1 RLAIF summary: I have anxiety and I think I have a heart
problem. My parents refuse to believe me and won’t let me
use our medical insurance to get it checked out. What should
I do?

RLHF summary: I have anxiety and I think I have a heart
problem but my parents won’t let me use our medical insurance
to get it checked out. What should I do? I’m 20 years old.
..please help

Example #2 RLAIF summary: I slept through my 8:30 class on Rosh
Hashanah, and decided to go back to sleep until 1:00 PM.

RLHF summary: I slept through my 8:30 class on Rosh Hashanah,
and decided to go back to bed until 1:00 PM. I’m a lazy f***.

Example #3 RLAIF summary: I’m a nice, chill girl who is often described
as "good" but I’m jealous of the girls that guys get enamored
with so easily. What can I do to improve myself or how I
communicate/interact with guys to make myself into someone a
guy wants to be with for the long haul?

RLHF summary: I’m a nice, chill girl who is often described
as "boring". I’m jealous of the girls that guys get enamored
with so easily. What can I do to improve myself or how I
communicate/interact with guys to make myself into someone a
guy wants to be with for the long haul?

Table 11: We observe that the RLHF policy tends to hallucinate more frequently than the RLAIF policy. Hallucina-
tions are highlighted in red.



Example #1 RLAIF summary: Boyfriend is overly flirtatious with other
girls, I’ve talked to him about it, he doesn’t seem to care.
It’s causing trust issues. Am I overreacting? What else can
I do?

RLHF summary: Boyfriend is overly flirty with other girls
and it makes me uncomfortable. I’ve talked to him about it
multiple times, but he doesn’t seem to care. What else can I
do? Am I overreacting?

Example #2 RLAIF summary: Asked a girl to prom, things were going great
until I asked her. Now our conversations are awkward and I’m
not sure if I should ask her out. Should I just give up?

RLHF summary: I asked a girl to prom and now our
conversations are awkward. I like her and I’m wondering if
I should ask her out or just give up. I’m not sure

Example #3 RLAIF summary: Broke up with girl 1, she started dating my
best friend. Dated girl 2, she became unstable and we broke
up. I still feel attached to both. Why? How do I get over
this? Any advice?

RLHF summary: I broke up with a girl I was with for years,
and she started dating my best friend. I started dating a
new girl, and she became depressed and distant. I still feel
attached to both. Why?

Table 12: Another pattern identified through manually inspected summaries is that summaries from the RLAIF
policy tend to be less coherent and grammatical than summaries from the RLHF policy. Less coherent phrases are
highlighted in red.
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