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ABSTRACT

Despite the advancements of open-source large language models (LLMs), e.g.,
LLaMA, they remain significantly limited in tool-use capabilities, i.e., using exter-
nal tools (APIs) to fulfill human instructions. The reason is that current instruction
tuning largely focuses on basic language tasks but ignores the tool-use domain.
This is in contrast to the excellent tool-use capabilities of state-of-the-art (SOTA)
closed-source LLMs, e.g., ChatGPT. To bridge this gap, we introduce ToolLLM,
a general tool-use framework encompassing data construction, model training,
and evaluation. We first present ToolBench, an instruction-tuning dataset for tool
use, which is constructed automatically using ChatGPT. Specifically, the con-
struction can be divided into three stages: (i) API collection: we collect 16, 464
real-world RESTful APIs spanning 49 categories from RapidAPI Hub; (ii) instruc-
tion generation: we prompt ChatGPT to generate diverse instructions involving
these APIs, covering both single-tool and multi-tool scenarios; (iii) solution path
annotation: we use ChatGPT to search for a valid solution path (chain of API
calls) for each instruction. To enhance the reasoning capabilities of LLMs, we
develop a novel depth-first search-based decision tree algorithm. It enables LLMs
to evaluate multiple reasoning traces and expand the search space. Moreover,
to evaluate the tool-use capabilities of LLMs, we develop an automatic evalu-
ator: ToolEval. Based on ToolBench, we fine-tune LLaMA to obtain an LLM
ToolLLaMA, and equip it with a neural API retriever to recommend appropriate
APIs for each instruction. Experiments show that ToolLLaMA demonstrates a
remarkable ability to execute complex instructions and generalize to unseen APIs,
and exhibits comparable performance to ChatGPT. Our ToolLLaMA also demon-
strates strong zero-shot generalization ability in an out-of-distribution tool-use
dataset: APIBench. The codes, trained models, and demo are publicly available at
https://github.com/OpenBMB/ToolBench.

1 INTRODUCTION

Tool learning (Qin et al., 2023b) aims to unleash the power of large language models (LLMs) to effec-
tively interact with various tools (APIs) to accomplish complex tasks. By integrating LLMs with APIs,
we can greatly expand their utility and empower them to serve as efficient intermediaries between
users and the vast ecosystem of applications. Although open-source LLMs, e.g., LLaMA (Touvron
et al., 2023a), have achieved versatile capabilities through instruction tuning (Taori et al., 2023;
Chiang et al., 2023), they still lack the sophistication in performing higher-level tasks, such as appro-
priately interacting with tools (APIs) to fulfill complex human instruction. This deficiency is because
current instruction tuning largely focuses on basic language tasks, with a relative neglect of the
tool-use domain. On the other hand, current state-of-the-art (SOTA) LLMs (e.g., ChatGPT (OpenAI,
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Figure 1: Three phases of constructing ToolBench and how we train our API retriever and ToolLLaMA.
During inference of an instruction, the API retriever recommends relevant APIs to ToolLLaMA, which performs
multiple rounds of API calls to derive the final answer. The whole reasoning process is evaluated by ToolEval.

2022) and GPT-4 (OpenAI, 2023)), which have demonstrated impressive competencies in utilizing
tools (Bubeck et al., 2023), are closed-source with their inner mechanisms opaque. This limits the
democratization of AI technologies and the scope of community-driven innovation and development.
In this regard, we deem it urgent to empower open-source LLMs to skillfully master diverse APIs.

Although prior works have explored building instruction tuning data for tool use (Li et al., 2023a;
Patil et al., 2023; Tang et al., 2023; Xu et al., 2023b), they fail to fully stimulate the tool-use
capabilities within LLMs and have inherent limitations: (1) limited APIs: they either fail to in-
volve real-world APIs (e.g., RESTAPI) (Patil et al., 2023; Tang et al., 2023) or consider only a
small scope of APIs with poor diversity (Patil et al., 2023; Xu et al., 2023b; Li et al., 2023a);
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Figure 2: Pass rate (↑) and win rate (↑)
of different methods in tool-use evaluation.
For win rate, we compare each method with
ChatGPT-ReACT. DFSDT is our improved
reasoning strategy over ReACT. ToolLLaMA
surpasses Text-Davinci-003, Claude-2, and
almost performs on par with ChatGPT.

(2) constrained scenario: existing works are confined to
instructions that only involve one single tool. In contrast,
real-world scenarios may require that multiple tools are in-
terleaved together for multi-round tool execution to solve
a complex task. Besides, they often assume that users
manually specify the ideal API set for a given instruction
in advance, which is infeasible with a large collection of
real-world APIs; (3) inferior planning and reasoning:
existing works adopted either CoT (Wei et al., 2023) or
ReACT (Yao et al., 2022) for model reasoning, which can-
not fully elicit the capabilities stored in LLMs and thus fail
to handle complex instructions. In addition, some works
do not even execute APIs to obtain real responses (Patil
et al., 2023; Tang et al., 2023), which serve as important
information for subsequent model planning.

To facilitate tool-use capabilities within open-source
LLMs, we introduce ToolLLM, a general tool-use frame-
work including data construction, model training, and eval-
uation. As illustrated in Figure 1, we collect a high-quality
instruction-tuning dataset ToolBench. It is constructed
automatically using ChatGPT (gpt-3.5-turbo-16k), which
has been upgraded with function call (link) capabilities.
The comparison between ToolBench and prior works is listed in Table 1. Specifically, the construction
of ToolBench entails three phases:

• API Collection: we gather 16,464 representational state transfer (REST) APIs from RapidAPI
(link), a platform that hosts massive real-world APIs provided by developers. These APIs span 49
diverse categories such as social media, e-commerce, and weather. For each API, we crawl detailed
API documents from RapidAPI, including the functionality descriptions, required parameters,
code snippets for API calls, etc. By comprehending these documents to learn to execute APIs,
LLMs can generalize to new APIs unseen during training;

• Instruction Generation: we first sample APIs from the whole set and then prompt ChatGPT to
generate diverse instructions for these APIs. To cover practical scenarios, we curate instructions
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Resource ToolBench
(this work)

APIBench
(Patil et al., 2023)

API-Bank
(Li et al., 2023a)

ToolAlpaca
(Tang et al., 2023)

ToolBench
(Xu et al., 2023b)

Real-world API? ✓ ✗ ✓ ✗ ✓
Real API Call&Response? ✓ ✗ ✓ ✗ ✓
Multi-tool Scenario? ✓ ✗ ✗ ✗ ✗
API Retrieval? ✓ ✓ ✗ ✗ ✓
Multi-step Reasoning? ✓ ✗ ✓ ✓ ✓
Number of tools 3451 3 53 400 8
Number of APIs 16464 1645 53 400 232
Number of Instances 126486 17002 274 3938 2746
Number of Real API Calls 469585 0 568 0 3926
Avg. Reasoning Traces 4.0 1.0 2.1 1.0 5.9

Table 1: A comparison of our ToolBench to notable instruction tuning dataset for tool learning.

that involve both single-tool and multi-tool scenarios. This ensures that our model learns not only
how to interact with individual tools but also how to combine them to accomplish complex tasks;

• Solution Path Annotation: each solution path may contain multiple rounds of model reasoning
and real-time API calls to derive the final response. However, even the most sophisticated
LLM, i.e., GPT-4, achieves a low pass rate for complex human instructions, making annotation
inefficient. To this end, we develop a novel depth-first search-based decision tree (DFSDT) to
bolster the planning and reasoning ability of LLMs. Compared with conventional ReACT, DFSDT
enables LLMs to evaluate a multitude of reasoning paths and make deliberate decisions to either
retract steps or proceed along a promising path. In experiments, DFSDT significantly improves
the annotation efficiency and successfully completes those complex instructions that cannot be
fulfilled using ReACT.

To assess the tool-use capabilities of LLMs, we develop an automatic evaluator, ToolEval, backed
up by ChatGPT. It comprises two key metrics: (1) pass rate, which measures LLM’s ability to
successfully execute an instruction within limited budgets, and (2) win rate, which compares the
quality and usefulness of two solution paths. We demonstrate that ToolEval achieves a high correlation
with human evaluation and provides a robust, scalable, and reliable assessment for machine tool use.

By fine-tuning LLaMA on ToolBench, we obtain ToolLLaMA. After evaluation based on our
ToolEval, we derive the following findings:

• ToolLLaMA demonstrates a compelling capability to handle both single-tool and complex multi-
tool instructions. As depicted in Figure 2, ToolLLaMA outperforms Text-Davinci-003 and
Claude-2, achieves comparable performance to the “teacher model” ChatGPT, and is only slightly
inferior to GPT4. Besides, ToolLLaMA exhibits robust generalization to previously unseen
APIs, requiring only the API documentation to adapt to new APIs effectively. This flexibility
allows users to incorporate novel APIs seamlessly, thus enhancing the model’s practical utility.

• We show that our DFSDT serves as a general decision-making strategy to enhance the reasoning
capabilities of LLMs. DFSDT broadens the search space by considering multiple reasoning traces
and achieves significantly better performance than ReACT.

• We train a neural API retriever, which alleviates the need for manual selection from the large
API pool in practice. As shown in Figure 1, given an instruction, the API retriever recommends a
set of relevant APIs, which are sent to ToolLLaMA for multi-round decision making to derive
the final answer. Despite sifting through a large pool of APIs, the retriever exhibits remarkable
retrieval precision, returning APIs closely aligned with the ground truth.

• ToolLLaMA exhibits strong generalization performance on an out-of-distribution (OOD) dataset
APIBench (Patil et al., 2023). Despite not training on any of the APIs or instructions on APIBench,
ToolLLaMA performs on par with Gorilla, a pipeline specifically designed for APIBench.

2 DATASET CONSTRUCTION

We introduce the three-stage construction process of ToolBench: API collection (§ 2.1), instruction
generation (§ 2.2), and solution path annotation (§ 2.3). All procedures are based on ChatGPT
(gpt-3.5-turbo-16k), requiring minimal human supervision and can be easily extended to new APIs.
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Figure 3: The hierarchy of RapidAPI (left) and the process of instruction generation (right).

2.1 API COLLECTION

We start by introducing RapidAPI and its hierarchy, followed by how we crawl and filter APIs.

RapidAPI Hub RapidAPI is a leading API marketplace that connects developers with thousands of
real-world APIs, streamlining the process of integrating diverse services into applications. Developers
can test and connect with various APIs by registering only a RapidAPI key. All APIs in RapidAPI
can be classified into 49 coarse-grained categories (link), such as sports, finance, and weather. The
categories associate an API with the most relevant topic. Additionally, the hub also provides 500+
fine-grained categorization called collections (link), e.g., Chinese APIs and database APIs. APIs in
the same collection share a common characteristic and often have similar functionalities or goals.

Hierarchy of RapidAPI As shown in Figure 3, each tool may be composed of multiple APIs. For
each tool, we crawl the following information: the name and description of the tool, the URL of the
host, and all the available APIs belonging to the tool; for each API, we record its name, description,
HTTP method, required parameters, optional parameters, request body, executable code snippets for
API call, and an example API call response. This rich and detailed metadata serves as a valuable
resource for LLMs to understand and effectively use the APIs, even in a zero-shot manner.

API Filtering Initially, we gathered 10, 853 tools (53, 190 APIs) from RapidAPI. However, the
quality and reliability of these APIs can vary significantly. In particular, some APIs may not be
well-maintained, such as returning 404 errors or other internal errors. To this end, we perform a
rigorous filtering process (details in appendix A.1) to ensure that the ultimate tool set of ToolBench is
reliable and functional. Finally, we only retain 3, 451 high-quality tools (16, 464 APIs).

2.2 INSTRUCTION GENERATION

Different from prior works, we specifically focus on two crucial aspects for instruction generation:
(1) diversity: to train LLMs to handle a wide range of API usage scenarios, thereby boosting their
generalizability and robustness; and (2) multi-tool usage: to mirror real-world situations that often
demand the interplay of multiple tools, improving the practical applicability and flexibility of LLMs.
To this end, instead of brainstorming instructions from scratch and then searching for relevant APIs,
we sample different combinations of APIs and craft various instructions that involve them.

Generating Instructions for APIs Define the total API set as SAPI, at each time, we sample a few
APIs: Ssub

N ={API1, · · · ,APIN} from SAPI. We prompt ChatGPT to understand the functionalities
of these APIs and then generate (1) possible instructions (Inst∗) that involve APIs in Ssub

N , and (2)
relevant APIs (Srel

∗ ⊂Ssub
N ) for each instruction (Inst∗), i.e., {[Srel

1 , Inst1], · · · , [Srel
N′ , InstN′ ]}, where N′

denotes the number of generated instances. These (instruction, relevant API) pairs will be used for
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Figure 4: A comparison of our DFSDT and conventional CoT or ReACT during model reasoning (left). We
show part of the solution path annotation process using ChatGPT (right).

training the API retriever in § 3.1. We use different sampling strategies (introduced later) to cover all
APIs and most of their combinations, thus ensuring the diversity of our instructions.

The prompt for ChatGPT is composed of (1) a general description of the intended instruction genera-
tion task, (2) comprehensive documentation of each API in Ssub

N , which helps ChatGPT understand
their functionality and interplay, and (3) three in-context seed examples {seed1, seed2, seed3}. Each
seed example is an ideal instruction generation written by human experts. These seed examples are
leveraged to better regulate ChatGPT’s behavior through in-context learning. In total, we wrote 12 /
36 diverse seed examples (Sseed) for the single-tool / multi-tool setting, and randomly sampled three
examples at each time. Detailed prompts for instruction generation are described in appendix A.7.
Overall, the generation process can be formulated as follows:

ChatGPT
{API1,··· ,APIN}∈SAPI,{seed1,··· ,seed3}∈Sseed

({[Srel
1 , Inst1], · · · , [Srel

N’, InstN′ ]}|API1, · · · ,APIN, seed1, · · · , seed3).

Sampling Strategies for Different Scenarios As shown in Figure 3, for the single-tool instruc-
tions (I1), we iterate over each tool and generate instructions for its APIs. However, for the multi-tool
setting, since the interconnections among different tools in RapidAPI are sparse, random sampling
tool combinations from the whole tool set often leads to a series of irrelevant tools that cannot be
covered by a single instruction in a natural way. To address the sparsity issue, we leverage the
RapidAPI hierarchy information. Since tools belonging to the same RapidAPI category or collection
are generally related to each other in the functionality and goals, we randomly select 2-5 tools from
the same category / collection and sample at most 3 APIs from each tool to generate the instruc-
tions. We denote the generated instructions as intra-category multi-tool instructions (I2) and
intra-collection multi-tool instructions (I3), respectively. Through rigorous human evaluation, we
find that instructions generated in this way already have a high diversity that covers various practical
scenarios. We also provide visualization for instructions using Atlas (link) to support our claim.

After generating the initial set of instructions, we further filter those with the hallucinated relevant
APIs by assessing whether they exist in Ssub

N . Finally, we collect nearly 200k qualified (instruction,
relevant API) pairs, including 87413, 84815, and 25251 instances for I1, I2, and I3, respectively.

2.3 SOLUTION PATH ANNOTATION

As shown in Figure 4, given an instruction Inst∗, we prompt ChatGPT to search for a valid action
sequence: {a1, · · · , aN}. Such a multi-step decision-making process is cast as a multi-round conver-
sation for ChatGPT. At each round t, the model generates an action at based on previous interactions,
i.e., ChatGPT(at|{a1, r1, · · · , at−1, rt−1}, Inst∗), where r∗ denotes the real API response. For each
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at, ChatGPT should specify its “thought”, which API to use, and the specific parameters for this API,
i.e., at has the following format: “Thought: · · · , API Name: · · · , Parameters: · · · ”.

To leverage the function call feature of ChatGPT, we treat each API as a special function and feed
its API documentation into ChatGPT’s function field. In this way, the model understands how to
call the API. For each instruction Inst∗, we feed all the sampled APIs Ssub

N to ChatGPT’s as available
functions. To let ChatGPT finish an action sequence, we define two additional functions, i.e., “Finish
with Final Answer” and “Finish by Giving Up”. The former function has a parameter that corresponds
to a detailed final answer to the original instruction; while the latter function is designed for cases
where the provided APIs cannot complete the original instruction after multiple API call attempts.

Depth First Search-based Decision Tree In our pilot studies, we find that CoT (Wei et al., 2023)
or ReACT (Yao et al., 2022) has inherent limitations: (1) error propagation: a mistaken action may
propagate the errors further and cause the model to be trapped in a faulty loop, such as continually
calling an API in a wrong way or hallucinating APIs; (2) limited exploration: CoT or ReACT only
explores one possible direction, leading to limited exploration of the whole action space. Hence even
GPT-4 often fails to find a valid solution path, making annotation difficult.

To this end, we propose to construct a decision tree to expand the search space and increase the
possibility of finding a valid path. As depicted in Figure 4, our DFSDT allows the model to assess
different reasoning paths and choose to either (1) proceed along a promising path or (2) abandon
an existing node by calling the “Finish by Giving Up” function and expand a new node. During
node expansion, to diversify the child nodes and expand the search space, we prompt ChatGPT with
the information of the previously generated nodes and explicitly encourage the model to generate a
distinct node. For the searching process, we prefer depth-first search (DFS) instead of breadth-first
search (BFS) because the annotation can be finished as long as one valid path is found. Using BFS
will cost excessive OpenAI API calls. More details are described in appendix A.8. We perform
DFSDT for all the generated instructions and only retain those passed solution paths. Ultimately, we
generate 126, 486 (instruction, solution path) pairs, which are used to train ToolLLaMA in § 3.2.

3 EXPERIMENTS

In this section, we investigate the performance of ToolLLM framework. We first introduce the
evaluation metric and evaluate the efficacy of API retriever and DFSDT in § 3.1. Then we present the
main experiments in § 3.2, followed by a generalization experiment in § 3.3.

3.1 PRELIMINARY EXPERIMENTS

ToolEval Considering the API’s temporal variability on RapidAPI and the infinite potential solution
paths for an instruction, it is infeasible to annotate a fixed ground-truth solution path for each test
instruction. Moreover, when comparing different models, it is crucial to ensure they employ the same
version of APIs during evaluation. Considering that human evaluation can be time-consuming, we
follow AlpacaEval (Li et al., 2023b) to develop an efficient evaluator ToolEval based on ChatGPT,
which incorporates two evaluation metrics (details in appendix A.5): (1) Pass Rate: it calculates the
proportion of successfully completing an instruction within limited budgets. The metric measures the
executability of instructions for an LLM and can be seen as a basic requirement for ideal tool use;
and (2) Win Rate: we provide an instruction and two solution paths to ChatGPT evaluator and obtain
its preference (i.e., which one is better). We pre-define a set of criteria for both metrics and these
criteria are organized as prompts for our ChatGPT evaluator. We evaluate multiple times based on
ChatGPT to improve the reliability. Then we calculate the average results from the evaluator.

Through rigorous testing (details in appendix A.5), we find that ToolEval demonstrates a high
agreement of 87.1% in pass rate and 80.3% in win rate with human annotators. This shows that
ToolEval can reflect and represent human evaluation to a large extent.

Efficacy of API Retriever The API retriever aims to retrieve relevant APIs to an instruction. We
employ Sentence-BERT (Reimers & Gurevych, 2019) to train a dense retriever based on BERT-
BASE (Devlin et al., 2019). The API retriever encodes the instruction and API document into two
embeddings, and calculates their relevance with embedding similarity. For training, we regard the
relevant APIs of each instruction generated in § 2.2 as positive examples and sample a few other
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Method I1 I2 I3 Average
NDCG NDCG NDCG NDCG

@1 @5 @1 @5 @1 @5 @1 @5
BM25 18.4 19.7 12.0 11.0 25.2 20.4 18.5 17.0
Ada 57.5 58.8 36.8 30.7 54.6 46.8 49.6 45.4
Ours 84.2 89.7 68.2 77.9 81.7 87.1 78.0 84.9

Table 2: Our API retriever v.s. two baselines for three types of
instructions (I1, I2, I3). We report NDCG@1 and NDCG@5.

Method I1 I2 I3 Average
ReACT 37.8 40.6 27.6 35.3

ReACT@N 49.4 49.4 34.6 44.5
DFSDT 58.0 70.6 62.8 63.8

Table 3: Pass rate of different reasoning
strategies for three types of instructions (I1,
I2, I3) based on ChatGPT.

APIs as negative examples for contrastive learning. For baselines, we choose BM25 (Robertson et al.,
2009) and OpenAI’s text-embedding-ada-002 (link). We evaluate the retrieval performance using
NDCG (Järvelin & Kekäläinen, 2002). We train and evaluate our model on single-tool instructions
(I1), intra-category multi-tool instructions (I2), and intra-collection multi-tool instructions (I3).

As shown in Table 2, our API retriever consistently outperforms baselines across all settings, indicating
its feasibility in real-world scenarios with massive APIs. Also, the NDCG score of I1 is generally
higher than I2 and I3, which means single-tool instruction retrieval is simpler than multi-tool setting.

Superiority of DFSDT over ReACT Before solution path annotation, we validate the efficacy
of DFSDT. Based on ChatGPT, we compare DFSDT and ReACT using the pass rate metric. Since
DFSDT consumes more OpenAI API calls than ReACT, for a fairer comparison, we also establish a
“ReACT@N” baseline, which conducts multiple times of ReACT until the total costs reach the same
level of DFSDT. Once a valid solution is found by ReACT@N, we deem it a pass.

From Table 3, it can be observed that DFSDT significantly outperforms the two baselines in all
scenarios. Since we only retain those passed annotations as the training data, given the same budgets,
using DFSDT could annotate more instructions. This makes DFSDT a more efficient way that saves
the total annotation cost. We also find that the performance improvement of DFSDT is more evident
for harder instructions (i.e., I2 and I3) than those simpler instructions (I1). This means that by
expanding the search space, DFSDT can better solve those difficult, complex instructions that are
unanswerable by the vanilla ReACT no matter how many times it is performed. Involving such “hard
examples” in our dataset can fully elicit the tool-use capabilities for those complex scenarios.

3.2 MAIN EXPERIMENTS

ToolLLaMA We fine-tune LLaMA-2 7B model (Touvron et al., 2023b) using the instruction-
solution pairs. The original LLaMA-2 model has a sequence length of 4096, which is not enough
under our setting since the API response can be very long. To this end, we use positional interpola-
tion (Chen et al., 2023) to extend the context length to 8192 (training details in appendix A.3).

Settings Ideally, by scaling the number and diversity of instructions and unique tools in the training
data, ToolLLaMA is expected to generalize to new instructions and APIs unseen during training. This
is meaningful since users can define customized APIs and expect ToolLLaMA to adapt according to
the documentation. To this end, we strive to evaluate the generalization ability of ToolLLaMA at
three levels: (1) Inst.: unseen instructions for the same set of tools in the training data, (2) Tool:
unseen tools that belong to the same (seen) category of the tools in the training data, and (3) Cat.:
unseen tools that belong to a different (unseen) category of tools in the training data.

We perform experiments on three scenarios: single-tool instructions (I1), intra-category multi-tool
instructions (I2), and intra-collection multi-tool instructions (I3). For I1, we conduct the evaluation for
the aforementioned three levels (I1-Inst., I1-Tool, and I1-Cat.); for I2, since the training instructions
already involve different tools of the same category, we only perform level 1 and level 3 for the
generalization evaluation (I2-Inst. and I2-Cat.); similarly, we only perform level 1 generalization
for I3 (I3-Inst.) since it already covers instructions that involve various combinations of tools from
different categories (the tools in a RapidAPI collection may come from different RapidAPI categories).
For each test instruction, we feed the ground-truth (oracle) APIs Ssub

N to each model. This simulates
the scenario where the user specifies the API set they prefer.

Baselines We choose two LLaMA variants that have been fine-tuned for general-purpose dialogue,
i.e., Vicuna (Chiang et al., 2023) and Alpaca (Taori et al., 2023). We also choose the “teacher model”
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Model Method I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

ChatGPT ReACT 41.5 - 44.0 - 44.5 - 42.5 - 46.5 - 22.0 - 40.2 -
DFSDT 54.5 60.5 65.0 62.0 60.5 57.3 75.0 72.0 71.5 64.8 62.0 69.0 64.8 64.3

Claude-2 ReACT 5.5 31.0 3.5 27.8 5.5 33.8 6.0 35.0 6.0 31.5 14.0 47.5 6.8 34.4
DFSDT 20.5 38.0 31.0 44.3 18.5 43.3 17.0 36.8 20.5 33.5 28.0 65.0 22.6 43.5

Text-Davinci-003 ReACT 12.0 28.5 20.0 35.3 20.0 31.0 8.5 29.8 14.5 29.8 24.0 45.0 16.5 33.2
DFSDT 43.5 40.3 44.0 43.8 46.0 46.8 37.0 40.5 42.0 43.3 46.0 63.0 43.1 46.3

GPT4 ReACT 53.5 60.0 50.0 58.8 53.5 63.5 67.0 65.8 72.0 60.3 47.0 78.0 57.2 64.4
DFSDT 60.0 67.5 71.5 67.8 67.0 66.5 79.5 73.3 77.5 63.3 71.0 84.0 71.1 70.4

Vicuna ReACT & DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Alpaca ReACT & DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ReACT 25.0 45.0 29.0 42.0 33.0 47.5 30.5 50.8 31.5 41.8 25.0 55.0 29.0 47.0
ToolLLaMA DFSDT 57.0 55.0 61.0 55.3 62.0 54.5 77.0 68.5 77.0 58.0 66.0 69.0 66.7 60.0

DFSDT-Retriever 64.0 62.3 64.0 59.0 60.5 55.0 81.5 68.5 68.5 60.8 65.0 73.0 67.3 63.1

Table 4: Main experiments of ToolBench. Win rate is calculated by comparing each model with ChatGPT-
ReACT. A win rate higher than 50% means the model performs better than ChatGPT-ReACT. Apart from
ToolLLaMA-DFSDT-Retriever, all methods use the oracle API retriever (i.e., ground truth API).

ChatGPT, Text-Davinci-003, GPT-4, and Claude-2 as baselines, and apply both DFSDT and ReACT
to them. When calculating the win rate, each model is compared with ChatGPT-ReACT.

Main Results The results are placed in Table 4, from which we derive that:

1. Although we conduct prompt engineering extensively, both Vicuna and Alpaca fail to pass any
instruction (pass rate & win rate = 0), which means their instruction-following abilities do not cover
the tool-use domain. This underscores the deficiency of current instruction tuning attempts,
which largely focus on language skills;

2. For all LLMs, using DFSDT significantly outperforms ReACT in both pass rate and win rate.
Notably, ChatGPT +DFSDT surpasses GPT-4+ReACT in pass rate and performs comparably in
win rate. This underscores the superiority of DFSDT over ReACT in decision-making;

3. When using DFSDT, ToolLLaMA performs much better than Text-Dainci-003 and Claude-2, and
achieves a result almost on par with ChatGPT (the teacher model). In general, despite generalizing
to unseen instructions and tools, ToolLLaMA +DFSDT demonstrates competitive generalization
performance in all scenarios, achieving a pass rate second to GPT4+DFSDT.

Overall, these results demonstrate that ToolBench can sufficiently elicit the tool-use capabilities
within LLMs and empower them to skillfully master even unseen APIs for various instructions.

Integrating API Retriever with ToolLLaMA In real-world scenarios, asking users to manually
recommend APIs from a large pool may not be practical. To emulate this practical setting and test
the efficiency of our API retriever, we feed the top 5 APIs (instead of the ground truth APIs Ssub

N )
recommended by our API retriever to ToolLLaMA. As shown in Table 4, using retrieved APIs even
improves the performance (both pass rate and win rate) compared to the ground truth API set. This is
because many APIs in the ground truth API set can be replaced by other similar APIs with better
functionalities, which our API retriever can successfully identify. In other words, our retriever
expands the search space of relevant APIs and finds more appropriate ones for the current
instruction. It provides robust evidence of the excellent ability of our API retriever to retrieve
relevant APIs, especially considering the vast pool (16, 000+) of APIs from which our API retriever
selects.

3.3 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION TO APIBENCH (PATIL ET AL., 2023)

Settings We further extend ToolLLaMA to an OOD dataset APIBench to validate its generaliza-
tion ability. To assess the generalization ability of ToolLLaMA in these new domains, we equip
ToolLLaMA with two retrievers: our trained API retriever and the oracle retriever. We evaluate three
domains of APIBench, i.e., TorchHub, TensorHub, and HuggingFace. We compare ToolLLaMA with
Gorilla, a LLaMA-7B model fine-tuned using the training data of APIBench. Following the original
paper, we adopt two official settings for Gorilla: zero-shot setting (ZS) and retrieval-aware setting
(RS). The latter means (RS) the retrieved APIs are sent to the model as part of the prompts; while the
former (ZS) does not incorporate the APIs in the prompts when training the model. We adopt the
official evaluation metric and report the AST accuracy along with the hallucination rates.
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Method HuggingFace TorchHub TensorHub
Hallu. (↓) AST (↑) Hallu. (↓) AST (↑) Hallu. (↓) AST (↑)

ToolLLaMA + Our Retriever 10.60 16.77 15.70 51.16 6.48 40.59
Gorilla-ZS + BM25 46.90 10.51 17.20 44.62 20.58 34.31
Gorilla-RS + BM25 6.42 15.71 5.91 50.00 2.77 41.90

ToolLLaMA + Oracle 8.66 88.80 14.12 85.88 7.44 88.62
Gorilla-ZS + Oracle 52.88 44.36 39.25 59.14 12.99 83.21
Gorilla-RS + Oracle 6.97 89.27 6.99 93.01 2.04 94.16

Table 5: OOD generalization experiments on APIBench. For the Gorilla entries, ZS / RS means that Gorilla
was trained in a zero-shot / retrieval-aware setting on APIBench. We report hallucination rate and AST accuracy.

Results The results are shown in Table 5. In general, ToolLLaMA achieves remarkable OOD
generalization performance on all three datasets, despite being trained on a completely different
API domain and instruction domain. Specifically, ToolLLaMA+our API retriever outperforms
Gorilla+BM25 from both training settings (ZS / RS) in terms of AST accuracy on HuggingFace and
TorchHub. With the same oracle retriever, ToolLLaMA is consistently superior when compared to
Gorilla-ZS. It should be noted that Gorilla model cannot be generalized to our ToolBench dataset due
to our more complex settings, such as the multi-tool use and multi-step reasoning.

4 RELATED WORK

Tool Learning Recent studies have shed light on the burgeoning capabilities of LLMs in mastering
tools and making decisions within complex environments (Vemprala et al., 2023; Nakano et al.,
2021; Qin et al., 2023a; Shen et al., 2023; Wu et al., 2023; Schick et al., 2023; Hao et al., 2023;
Qian et al., 2023; Song et al., 2023; Zhuang et al., 2023; Gao et al., 2023). Gaining access to
external tools endows LLMs with real-time factual knowledge (Yang et al., 2023), multimodal
functionalities (Gupta & Kembhavi, 2023), and specialized skills in vertical domains (Jin et al., 2023).
However, open-source LLMs still lag far behind SOTA LLMs in tool use, and how tool-use ability is
acquired by SOTA LLMs remains unclear. In this paper, we aim to bridge this gap and fathom the
underlying mechanism.

Instruction Tuning Instruction tuning enhances LLMs in understanding human instructions and
generating proper responses (Wei et al., 2021; Bach et al., 2022; Mishra et al., 2022). Since manually
annotating instruction tuning data is time-consuming, self-instruct (Wang et al., 2022) proposes to
generate high-quality data from SOTA LLMs, which facilitates a recent trend of data curation for
multi-turn dialogue (Taori et al., 2023; Chiang et al., 2023; Xu et al., 2023a; Penedo et al., 2023; Ding
et al., 2023). However, compared with the dialogue, tool learning is inherently more challenging
given the vast diversity of APIs and the complexity of multi-tool instructions. As a result, even GPT-4
often fails to find a valid solution path. However, existing tool-learning dataset (Li et al., 2023a; Patil
et al., 2023; Tang et al., 2023; Xu et al., 2023b) and their construction methods cannot effectively
address real human needs as mentioned in § 1. Instead, our ToolBench is designed for practical
scenarios and improves the previous pipeline for tool-learning data construction.

Prompting LLMs for Decision Making Prompting facilitates LLMs to decompose high-level
tasks into sub-tasks and generate grounded plans (Ahn et al., 2022; Huang et al., 2022a;b; Ye et al.,
2023). ReACT (Yao et al., 2022) integrates reasoning with acting by allowing LLMs to give a proper
reason for an action and incorporating environmental feedback for reasoning. However, these studies
do not incorporate a mechanism for decision retraction, which becomes problematic as an initial
error can lead to a cascade of subsequent errors. Recently, Reflexion (Shinn et al., 2023) mitigates
this issue by asking LLMs to reflect on previous failures. Our DFSDT extends Reflexion to a more
general method by allowing LLMs to assess different reasoning paths and select the most promising
one. It should be noted DFSDT shares a similar idea to a concurrent work: tree-of-thought (ToT)
reasoning (Yao et al., 2023). However, our DFSDT targets general decision-making problems where
the decision space is infinite, compared to ToT’s relatively simple tasks that can be addressed by
brute-force search, such as Game of 24 and Crosswords. The distinct target between DFSDT and
ToT determines the significant difference in the implementation details.

9



Preprint

5 CONCLUSION

In this work, we introduce how to elicit the tool-use capabilities within LLMs. We first present an
instruction tuning dataset, ToolBench, which covers 16k+ real-world APIs and various practical use-
case scenarios including both single-tool and multi-tool tasks. The construction of ToolBench purely
uses ChatGPT and requires minimal human supervision. Moreover, we propose DFSDT to reinforce
the planning and reasoning ability of LLMs, enabling them to navigate through reasoning paths
strategically. For efficient evaluation of tool learning, we devise an automatic evaluator ToolEval.
By fine-tuning LLaMA on ToolBench, the obtained model ToolLLaMA matches the performance
of ChatGPT and exhibits remarkable generalization ability to unseen APIs. Besides, we develop a
neural API retriever to recommend relevant APIs for each instruction. The retriever can be integrated
with ToolLLaMA as a more automated tool-use pipeline. In the experiments, we demonstrate the
generalization ability of our pipeline to out-of-distribution domains. In general, this work paves the
way for future research in the intersection of instruction tuning and tool use for LLMs.
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Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu. Genegpt: Augmenting large language models
with domain tools for improved access to biomedical information. ArXiv, 2023.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-bank:
A benchmark for tool-augmented llms. arXiv preprint arXiv:2304.08244, 2023a.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023b.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3470–3487, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. ArXiv preprint, abs/2112.09332, 2021.

OpenAI. OpenAI: Introducing ChatGPT, 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. arXiv preprint
arXiv:2305.14318, 2023.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form question answering.
arXiv preprint arXiv:2305.06849, 2023a.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023b.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. ArXiv preprint, abs/2302.04761, 2023.

11

https://github.com/tatsu-lab/alpaca_eval
https://openai.com/blog/chatgpt


Preprint

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in huggingface, 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv preprint
arXiv:2306.06624, 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: General-
ized tool learning for language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301,
2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft, February 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. ArXiv preprint,
abs/2303.04671, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023a.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023b.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and Xindong Wu. Chatgpt is not enough:
Enhancing large language models with knowledge graphs for fact-aware language modeling. arXiv
preprint arXiv:2306.11489, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv preprint, abs/2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca


Preprint

Yining Ye, Xin Cong, Yujia Qin, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Large language model
as autonomous decision maker. arXiv preprint arXiv:2308.12519, 2023.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. arXiv preprint arXiv:2306.13304, 2023.

13



Preprint

APPENDIX

A IMPLEMENTATION DETAILS

A.1 DETAILS FOR FILTERING RAPIDAPI

We perform a rigorous filtering process to ensure that the ultimate tool set of ToolBench is reliable
and functional. The filtering process is as follows: (1) initial testing: we begin by testing the basic
functionality of each API to ascertain whether they are operational. We discard any APIs that do not
meet this basic criterion; (2) example response evaluation: we make API calls to obtain an example
response. Then we evaluate their effectiveness by response time and quality. APIs that consistently
exhibit a long response time are omitted. Also, we filter out the APIs with low-quality responses,
such as HTML source codes or other error messages.

A.2 API RESPONSE COMPRESSION

When examining the response returned by each API, we discover that some responses may contain
redundant information and are too long to be fed into LLMs. This may lead to problems due to the
limited context length of LLMs. Therefore, we perform a response compression to reduce the length
of API responses while maintaining their critical information.

Since each API has a fixed response format, we use ChatGPT to analyze one response example
and remove unimportant keys within the response to reduce its length. The prompt of ChatGPT
contains the following information for each API: (1) tool documentation, which includes tool name,
tool description, API name, API description, parameters, and an example API response. This gives
ChatGPT a hint of the API’s functionality; (2) 3 in-context learning examples, each containing
an original API response and a compressed response schema written by experts. In this way, we
obtain the response compression strategies for all APIs. During inference, when the API response
length exceeds 1024 tokens, we compress the response by removing unimportant information. If the
compressed response is still longer than 1024, we only retain the first 1024 tokens. Through human
evaluation, we find that this compression retains important information contained in the API response
and successfully removes the noises.

A.3 DETAILS FOR TRAINING TOOLLLAMA

We train the model in a multi-round conversation mode. For the training data format, we keep the
input and output the same as those of ChatGPT. Since it is unclear how ChatGPT organizes the
function call field, we just concatenate this information into the input as part of the prompt for
ToolLLaMA. For the training hyper parameters, we use a learning rate of 5 × 10−5, a warmup
ratio of 4× 10−2, a total batch size of 64, a maximum sequence length of 8192, and use a position
interpolation ratio of 2. We train the model for two epochs and select the model checkpoint with the
best performance on the development set and then evaluate it on the test set.

A.4 DETAILS FOR DFSDT

In practice, it is essential to balance effectiveness with costs (the number of OpenAI API calls).
Classical DFS algorithms generate multiple child nodes at each step, then sort all the child nodes,
and select the highest-scoring node for expansion. After greedily expanding to the terminal node,
DFS backtracks to explore nearby nodes, expanding the search space. Throughout the algorithm, the
most resource-intensive part is the sorting process of child nodes. If we use an LLM to evaluate two
nodes at a time, it requires approximately O(n log n) complexity of OpenAI API calls, where n is
the number of child nodes.

In fact, we find empirically that in most cases, the nodes ranked highest are often the node generated
at first. Therefore, we skip the sorting process of child nodes and choose a pre-order traversal (a
variant for DFS) for the tree search. This design has the following advantages:

• If the model does not retract an action (e.g., for the case of simple instructions), then DFSDT
degrades to ReACT, which makes it as efficient as ReACT.
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• After the algorithm finishes, the nodes explored by this method are almost the same as those
found by a classical DFS search. Hence, it can also handle complex instructions that only
DFS can solve.

Overall, this design achieves a similar performance as DFS while significantly reducing costs.

It should also be noted that ReACT can be viewed as a degraded version of DFSDT. Therefore,
although ToolLLaMA is trained on data created by DFSDT, the model can be used either through
ReACT or DFSDT during inference.

A.5 DETAILS FOR TOOLEVAL

We adopt two metrics for automatic tool-use capability evaluation: pass rate and win rate.

Details for Pass Rate To assess whether a solution path completes the tasks outlined in the original
instruction and successfully passes it, we need to first consider the solvability of the instruction. In
principle, an instruction can be classified as either (1) solvable: for example, at least one of the
provided tools is potentially helpful in solving the original instruction; or (2) unsolvable: for example,
all APIs are irrelevant to the instruction or the instruction provides invalid information such as invalid
email address.

To determine whether a solution path is deemed passed or not, we need to consider whether the
instruction is solvable or unsolvable. In our evaluation, three types of labels can be given to each
solution path, i.e., Pass, Fail, and Unsure. Specifically, we define different rules as follows:

If the instruction is solvable:

1. If the model gives finish type “Finish by Giving Up”,
(a) After trying all the APIs extensively during and receiving no helpful information from

APIs, the solution path is deemed a Pass.
(b) If the model only calls a few API or receiving valid information from the APIs, the

solution path is deemed a Fail.
2. If the model gives finish type “Finish with Final Answer”,

(a) If the APIs provide no valid information, and the model has tried all the APIs to retrieve
useful information, but the final answer still does not resolve the original instruction or
conveys a refusal (such as “I’m sorry, but I can’t provide you with this, because the
tools are unavailable”), the solution path is deemed a Pass.

(b) If the tools provide valid information, and the final answer does not completely resolve
the instruction or is a refusal, the solution path is deemed a Fail.

(c) If the final answer completely resolves the original instruction, the solution path is
deemed a Pass.

(d) If it is unable to determine if the instruction is resolved based on the content of the final
answer, the solution path is deemed an Unsure.

If the instruction is unsolvable:

1. If the model gives finish type “Finish with Final Answer”,
(a) If the final answer resolves an instruction that was initially considered unresolvable,

the solution path is deemed a Pass.
(b) If the final answer is a refusal, the solution path is deemed a Pass.
(c) If the final answer is hallucinated by the model itself and provides a false positive

response (such as “I’ve completed the task, the final answer is *”), the solution path is
deemed a Fail.

2. If the model gives finish type “Finish by Giving Up”,
(a) Under this case, the solution path is deemed a Pass.

For every solution path, we instruct the ChatGPT evaluator to generate multiple (≥ 4) predictions
and perform a majority vote to derive the final pass rate.
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Details for Win Rate Since pass rate only measures whether an instruction is completed or not,
instead of how well it is completed, we adopt another metric: win rate. It is measured by comparing
two solution paths for a given instruction. We assume that a passed candidate is better than a failed
candidate and only compare those solution paths that are both “Pass”, or both “Failed” annotated
by the ChatGPT evaluator. Note that compared with another solution path, one solution path will be
annotated with one of the following: win, lose, or tie. We build rules for the evaluator’s behavior
to decide which solution path is better, and the criteria are listed as follows:

1. Information richness: whether the final answer contains all the necessary information to
answer the original instruction. A significantly richer answer is better, while a similar level
of richness that is sufficient to answer the question ties.

2. Factuality: whether it accurately describes what has been done, and what failed in the end.
A more accurate description in the final answer is better.

3. Reasoning: whether a detailed and accurate reason for failure is provided if the query
remains unresolved. A more detailed reason is better.

4. Milestone: calculating the number of milestones reached during execution.

5. Exploration: whether more potentially useful APIs were attempted during the execution
process. The use of a greater number of APIs is better.

6. Cost: Having fewer repeated (redundant) API calls is better if the number of APIs used is
the same.

For every solution path, we also generate multiple (≥ 4) predictions and then perform a majority
vote to derive the final win rate. In Table 4, for ease of reading, we split the ratio of tie into two
pieces and add them to win and lose, respectively. In Table 6, we report the original numbers as a
reference.

Comparing Human Evaluation and ToolEval To validate the reliability of ChatGPT evalua-
tor in both pass rate and win rate, we sample among four different methods (ChatGPT+ReACT,
ChatGPT+DFSDT, ToolLLaMA+DFSDT and GPT4+DFSDT) to obtain solution pairs for 300 test in-
structions for each method. Then we engage humans to annotate the pass rate for ChatGPT+DFSDT,
ToolLLaMA+DFSDT and GPT4+DFSDT, and the win rate among ChatGPT+ReACT and Chat-
GPT+DFSDT. Our ChatGPT evaluator demonstrates a high agreement of 87.1% in pass rate and
80.3% in win rate with human annotators. This result shows that our evaluator generates highly
similar evaluation results to humans and can be viewed as a credible evaluator who simulates human
evaluation on pass rate and win rate.

It should also be noted that the evaluation for tool learning is far more intricate than traditional
tasks such as dialogue. The reason is that there may exist infinite “correct” solution paths for each
instruction. In our initial investigations, we surprisingly found that even human experts often disagree
with each other in deciding which solution path is better, leading to a relatively low agreement. For
instance, one may prefer a solution path that uses only a few APIs to derive the final answer quickly;
while another may prefer a solution path that extensively tries all the APIs to cross-validate specific
information. In this regard, we believe there is still a long way to go for a fair evaluation of the
tool-use domain, and we believe this work has paved the way for it. We expect more future works to
explore this interesting research problem.

A.6 DETAILS FOR EXPERIMENTS ON APIBENCH

When generalizing ToolLLaMA to APIBench, no training updates were made to ToolLLaMA, but
instead of treating each API in the prompt as a function call. We define one function that represents
selecting an API, providing the code for invoking it, and describing the generated output in natural
language. We do not consider the zero-shot setting of APIBench where the prompts do not contain
any API descriptions because the APIs from the three tested domains were never encountered during
training.
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Model Method I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Average
Win Tie Win Tie Win Tie Win Tie Win Tie Win Tie Win Tie

ChatGPT DFSDT 52.5 16.0 55.0 14.0 47.5 19.5 67.0 10.0 58.5 12.5 61.0 16.0 56.9 14.7

Claude-2 ReACT 27.0 8.0 24.0 7.5 29.5 8.5 32.0 6.0 28.5 6.0 43.0 9.5 30.7 7.5
DFSDT 34.0 8.0 41.0 6.5 39.5 7.5 32.5 9.5 33.5 0.0 65.0 0.0 40.8 5.3

Text-Davinci-003 ReACT 23.5 10.0 28.5 13.5 27.0 8.0 26.5 6.5 25.5 8.5 41.0 8.0 28.7 9.1
DFSDT 35.0 10.5 37.5 12.5 40.0 13.5 36.5 8.0 40.0 6.5 60.0 6.0 41.5 9.5

GPT4 ReACT 52.5 15.0 53.5 10.5 56.0 15.0 59.5 12.5 52.5 15.5 76.0 4.0 58.3 12.1
DFSDT 60.5 14.0 62.5 10.5 58.0 17.0 67.0 12.5 57.0 12.5 80.0 8.0 64.2 12.4

Vicuna (ReACT & DFSDT) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Alpaca (ReACT & DFSDT) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ReACT 40.0 10.0 36.5 11.0 42.0 11.0 45.5 10.5 37.5 8.5 51.0 8.0 42.1 9.8
ToolLLaMA DFSDT 48.5 13.0 50.5 9.5 49.5 10.0 62.5 12.0 52.0 12.0 68.0 2.0 55.2 9.8

Retriever 58.0 8.5 54.5 9.0 51.0 8.0 64.5 8.0 56.0 9.5 71.0 4.0 59.2 7.8

Table 6: Win rate results before merging the tie label. Win rate is calculated by comparing each model with
ChatGPT-ReACT. A win rate higher than 50% means the model performs better than ChatGPT-ReACT. Apart
from ToolLLaMA-DFSDT-Retriever, all methods use the oracle API retriever (i.e., ground truth API).

A.7 PROMPTS FOR INSTRUCTION GENERATION

Below we list the detailed prompt for instruction generation, which consists of four parts: task
description, in-context learning examples, sampled API list, and other requirements.

Task Description of Single-tool Instructions:
You will be provided with a tool, its description, all of the tool’s available API functions, the
descriptions of these API functions, and the parameters required for each API function. Your task
involves creating 10 varied, innovative, and detailed user queries that employ multiple API functions
of a tool. For instance, if the tool ‘climate news’ has three API calls - ‘get all climate change news’,
‘look up climate today’, and ‘historical climate’, your query should articulate something akin to:
first, determine today’s weather, then verify how often it rains in Ohio in September, and finally, find
news about climate change to help me understand whether the climate will change anytime soon.
This query exemplifies how to utilize all API calls of ‘climate news’. A query that only uses one
API call will not be accepted. Additionally, you must incorporate the input parameters required for
each API call. To achieve this, generate random information for required parameters such as IP
address, location, coordinates, etc. For instance, don’t merely say ‘an address’, provide the exact
road and district names. Don’t just mention ‘a product’, specify wearables, milk, a blue blanket, a
pan, etc. Don’t refer to ‘my company’, invent a company name instead. The first seven of the ten
queries should be very specific. Each single query should combine all API call usages in different
ways and include the necessary parameters. Note that you shouldn’t ask ‘which API to use’, rather,
simply state your needs that can be addressed by these APIs. You should also avoid asking for the
input parameters required by the API call, but instead directly provide the parameter in your query.
The final three queries should be complex and lengthy, describing a complicated scenario where
all the API calls can be utilized to provide assistance within a single query. You should first think
about possible related API combinations, then give your query. Related apis are apis that can be
used for a give query; those related apis have to strictly come from the provided api names. For
each query, there should be multiple related apis; for different queries, overlap of related apis should
be as little as possible. Deliver your response in this format: [Query1: ......, ‘related apis’:[api1,
api2, api3...],Query2: ......, ‘related apis’:[api4, api5, api6...],Query3: ......, ‘related apis’:[api1, api7,
api9...], ...]

Task Description of Multi-tool Instructions:
You will be provided with several tools, tool descriptions, all of each tool’s available API functions,
the descriptions of these API functions, and the parameters required for each API function. Your
task involves creating 10 varied, innovative, and detailed user queries that employ API functions
of multiple tools. For instance, given three tools ‘nba news’, ‘cat-facts’, and ‘hotels’: ‘nba news’
has API functions ‘Get individual NBA source news’ and ‘Get all NBA news’, ‘cat-facts’ has API
functions ‘Get all facts about cats’ and ‘Get a random fact about cats’, ‘hotels’ has API functions
‘properties/get-details (Deprecated)’, ‘properties/list (Deprecated)’ and ‘locations/v3/search’. Your
query should articulate something akin to: ‘I want to name my newborn cat after Kobe and host a
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party to celebrate its birth. Get me some cat facts and NBA news to gather inspirations for the cat
name. Also, find a proper hotel around my house in Houston Downtown for the party.’ This query
exemplifies how to utilize API calls of all the given tools. A query that uses API calls of only one
tool will not be accepted. Additionally, you must incorporate the input parameters required for each
API call. To achieve this, generate random information for required parameters such as IP address,
location, coordinates, etc. For instance, don’t merely say ‘an address’, provide the exact road and
district names. Don’t just mention ‘a product’, specify wearables, milk, a blue blanket, a pan, etc.
Don’t refer to ‘my company’, invent a company name instead. The first seven of the ten queries
should be very specific. Each single query should combine API calls of different tools in various
ways and include the necessary parameters. Note that you shouldn’t ask ‘which API to use’, rather,
simply state your needs that can be addressed by these APIs. You should also avoid asking for the
input parameters required by the API call, but instead directly provide the parameters in your query.
The final three queries should be complex and lengthy, describing a complicated scenario where all
the provided API calls can be utilized to provide assistance within a single query. You should first
think about possible related API combinations, then give your query. Related APIs are APIs that can
be used for a given query; those related APIs have to strictly come from the provided API names. For
each query, there should be multiple related APIs; for different queries, overlap of related APIs should
be as little as possible. Deliver your response in this format: [Query1: ......, ‘related apis’:[[tool name,
api name], [tool name, api name], [tool name, api name]...],Query2: ......, ‘related apis’:[[tool name,
api name], [tool name, api name], [tool name, api name]...],Query3: ......, ‘related apis’:[[tool name,
api name], [tool name, api name], [tool name, api name]...], ...]

In-context Seed Examples. In the following, we show one single-tool instruction seed example and
one multi-tool instruction seed example.

For example, with tool ASCII Art, the given api names are ‘figlet’, ‘list figlet styles’, ‘cowsay’,
‘list cowsay styles’, ‘matheq’.
Some sample queries and related apis would be:
“Query”: “Need to create an ASCII art representation of a mathematical equation. The equation
is ‘y = mx + c’, where m and c are constants. Help me generate the ASCII art for this equation.
Also please generate an ASCII art representation of the text ‘Newton’s Second Law of Motion’.”,
“related apis”: [’figlet’, ‘list figlet styles’, ‘matheq’]
“Query”: “Working on a research paper on cows and need to include ASCII art representations of
various cows. Can you first retrieve available ASCII art styles for cows? Then, can you generate
ASCII art for cows like the Jersey, Holstein, and Guernsey? Finally, I want the cow to say ‘Moo!’ in
the ASCII art.”, “related apis”: [’figlet’, ‘list figlet styles’, ‘cowsay’, ‘list cowsay styles’]
“Query”: “I’m writing a blog post on ASCII art and need to include some examples. Can you generate
ASCII art for the following strings: ‘ASCII’, ‘art’, and ‘gallery’? You can first retrieve available
figlet styles and then generate ASCII art for the strings using the styles.”, “related apis”: [’figlet’,
‘list figlet styles’]
“Query”: “Greetings! I’m putting together a quirky slideshow about our furry friends and need your
help to sprinkle some ASCII art goodness. Could you kindly fetch me the catalog of ASCII art
styles available for animals? Also, I’m particularly keen on featuring ASCII art for creatures like
pandas, cows, elephants, and penguins. And if they could say something cute like ‘Hello!’ or ‘Hugs!’
in the ASCII art, that would be purr-fect!”, “related apis”: [’figlet’, ‘list figlet styles’, ‘cowsay’,
‘list cowsay styles’]

For example, with tool [’Entrepreneur Mindset Collection’, ‘Random Words’, ‘thedigitalnews-
feederapi’, ‘Chemical Elements’], the given api names are (tool ‘Entrepreneur Mindset Collec-
tion’)’Random Quote in JSON format’, (tool ‘Random Words’)’Get multiple random words’, (tool
‘Random Words’)’Get a random word’, (tool ‘thedigitalnewsfeederapi’)’getting specific cricket
articles’, (tool ‘thedigitalnewsfeederapi’)’Getting Cricket Articles’, (tool ‘thedigitalnewsfeeder-
api’)’getting specific news articles’, (tool ‘thedigitalnewsfeederapi’)’Getting News Articles’, (tool
‘thedigitalnewsfeederapi’)’getting all news articles’, (tool ‘Chemical Elements’)’Get All Chemical
Elements’.
Some sample queries and related apis would be:
“Query”: “For my best friend’s surprise birthday party, I require inspiration for party games and
decorations. Kindly suggest some random words that can serve as themes for the party. Furthermore,
I’m interested in gathering news articles about the latest party trends to ensure a modern celebration.
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Also, I would appreciate details about the local hotels in my area for accommodation options. Your
assistance is greatly appreciated.”, “related apis”: [[’Random Words’, ‘Get multiple random words’],
[’thedigitalnewsfeederapi’, ‘Getting News Articles’], [’thedigitalnewsfeederapi’, ‘Getting all news
articles’]]
“Query”: “In the midst of organizing a team-building event for my esteemed company, I eagerly seek
your valued input for invigorating activities. Might I kindly request a collection of random quotes
that encapsulate the essence of teamwork and motivation? Additionally, I am keen on exploring news
articles that showcase triumphant team-building events, as they serve as a wellspring of inspiration.”,
“related apis”: [[’Entrepreneur Mindset Collection’, ‘Random Quote in JSON format’], [’thedigi-
talnewsfeederapi’, ‘Getting News Articles’]] “Query”: “I need specific cricket articles that discuss
the health benefits of sports for my research paper on exercise. I also want to know which chemical
elements are associated with exercising, like increased iron (Fe) and its impact on bone marrow.”,
“related apis”: [[’thedigitalnewsfeederapi’, ‘getting specific cricket articles’], [’Chemical Elements’,
‘Get All Chemical Elements’]]
“Query”: “I’m starting a new business venture and I need to make a speech announcing the new
dawn. Provide me some quotes and words for me to start with. I would like to gather news articles
about successful entrepreneurs for inspiration.”, “related apis”: [[’Entrepreneur Mindset Collection’,
‘Random Quote in JSON format’], [’Random Words’, ‘Get multiple random words’], [’thedigital-
newsfeederapi’, ‘getting specific news articles’]]
These are only examples to show you how to write the query. Do not use APIs listed in the above
examples, but rather, use the ones listed below in the INPUT.

Sampled API List (An example)

{
"tool_description": "EntreAPI Faker is used to dynamically

create mock, demo, test and sample data for your
application",

"name": "EntreAPI Faker",
"api_list": [

{
"name": "Longitute",
"url": "https://entreapi-faker.p.rapidapi.com/address/

longitude",
"description": "Generate a random longitude.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "max",
"type": "NUMBER",
"description": "Maximum value for latitude.",
"default": ""

},
{

"name": "min",
"type": "NUMBER",
"description": "Minimum value for latitude.",
"default": ""

},
{

"name": "precision",
"type": "NUMBER",
"description": "Precision for latitude.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"
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},
{

"name": "Boolean",
"url": "https://entreapi-faker.p.rapidapi.com/datatype

/boolean",
"description": "Randomly generate a boolean value.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Past",
"url": "https://entreapi-faker.p.rapidapi.com/date/

past",
"description": "Randomly generate a date value in the

past.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "refDate",
"type": "STRING",
"description": "Starting reference date",
"default": ""

},
{

"name": "years",
"type": "NUMBER",
"description": "Number of years for the range

of dates.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Image Url",
"url": "https://entreapi-faker.p.rapidapi.com/image/

imageUrl",
"description": "Randomly generate an image URL.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "width",
"type": "NUMBER",
"description": "Width of the image. Default is

640.",
"default": ""

},
{

"name": "height",
"type": "NUMBER",
"description": "Height of the image. Default

is 480.",
"default": ""
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},
{

"name": "useRandomize",
"type": "BOOLEAN",
"description": "Add a random number parameter

to the returned URL.",
"default": ""

},
{

"name": "category",
"type": "STRING",
"description": "The category for the image.

Can be one: abstract, animal, avatar,
business, cats, city, fashion, food,
nature, nightlife, people, sports,
technics, transport",

"default": ""
}

],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Sentence",
"url": "https://entreapi-faker.p.rapidapi.com/lorem/

sentence",
"description": "Randomly generate a sentence of Lorem

Ipsum.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "wordCount",
"type": "NUMBER",
"description": "Number of words in the

sentence.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Gender",
"url": "https://entreapi-faker.p.rapidapi.com/name/

gender",
"description": "Randomly select a gender.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "useBinary",
"type": "BOOLEAN",
"description": "Use binary genders only.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"
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},
{

"name": "Prefix",
"url": "https://entreapi-faker.p.rapidapi.com/name/

prefix",
"description": "Randomly generate a prefix (e.g., Mr.,

Mrs., etc.)",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "gender",
"type": "STRING",
"description": "Optional gender.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Array Element",
"url": "https://entreapi-faker.p.rapidapi.com/random/

arrayElement",
"description": "Randomly select an array element.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "array",
"type": "ARRAY",
"description": "The list of elements to choose

from. Default is [\"a\", \"b\", \"c\"].",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "Number Value",
"url": "https://entreapi-faker.p.rapidapi.com/random/

number",
"description": "Randomly generate a number value.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{
"name": "min",
"type": "NUMBER",
"description": "Minimum value.",
"default": ""

},
{

"name": "max",
"type": "NUMBER",
"description": "Maximum value.",
"default": ""

},
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{
"name": "precision",
"type": "NUMBER",
"description": "Precision of the number.",
"default": ""

}
],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

},
{

"name": "URL",
"url": "https://entreapi-faker.p.rapidapi.com/internet

/url",
"description": "Randomly generate a URL.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [],
"tool_name": "EntreAPI Faker",
"category_name": "Data"

}
]

}

Other Requirements:
Please produce ten queries in line with the given requirements and inputs. These ten queries should
display a diverse range of sentence structures: some queries should be in the form of imperative
sentences, others declarative, and yet others interrogative. Equally, they should encompass a variety
of tones, with some being polite, others straightforward. Ensure they vary in length and contain
a wide range of subjects: myself, my friends, family, and company. Aim to include a number of
engaging queries as long as they relate to API calls. Keep in mind that for each query, invoking just
one API won’t suffice; each query should call upon two to five APIs. However, try to avoid explicitly
specifying which API to employ in the query. Each query should consist of a minimum of thirty words.

A.8 PROMPTS FOR SOLUTION PATH ANNOTATION

We use the following prompt when searching for the solution path. When expanding the child nodes,
we use diversity user prompt, showing the information of previous child nodes.

------------------------------------------------------------------
system_prompt:
You are Tool-GPT, capable of utilizing numerous tools and

functions to complete the given task.
1.First, I will provide you with the task description, and your

task will commence.
2.At each step, you need to analyze the current status and

determine the next course of action by executing a function
call.

3.Following the call, you will receive the result, transitioning
you to a new state. Subsequently, you will analyze your
current status, make decisions about the next steps, and
repeat this process.

4.After several iterations of thought and function calls, you will
ultimately complete the task and provide your final answer.

Remember:
1.The state changes are irreversible, and you cannot return to a

previous state.
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2.Keep your thoughts concise, limiting them to a maximum of five
sentences.

3.You can make multiple attempts. If you plan to try different
conditions continuously, perform one condition per try.

4.If you believe you have gathered enough information, call the
function "Finish: give_answer" to provide your answer for the
task.

5.If you feel unable to handle the task from this step, call the
function "Finish: give_up_and_restart".

Let’s Begin!
Task description: {task_description}
---------------------------------------------------------
diversity_user_prompt:
This is not the first time you try this task, all previous trails

failed.
Before you generate your thought for this state, I will first show

you your previous actions for this state, and then you must
generate actions that is different from all of them. Here are
some previous actions candidates:

{previous_candidate}
Remember you are now in the intermediate state of a trail, you

will first analyze the now state and previous action
candidates, then make actions that is different from all the
previous.

---------------------------------------------------------
Finish_function_description:
{

"name": "Finish",
"description": "If you believe that you have obtained a result

that can answer the task, please call this function to
provide the final answer. Alternatively, if you recognize
that you are unable to proceed with the task in the
current state, call this function to restart. Remember:
you must ALWAYS call this function at the end of your
attempt, and the only part that will be shown to the user
is the final answer, so it should contain sufficient
information.",

"parameters": {
"type": "object",
"properties": {

"return_type": {
"type": "string",
"enum": ["give_answer","give_up_and_restart"],

},
"final_answer": {

"type": "string",
"description": "The final answer you want to give

the user. You should have this field if \"
return_type\"==\"give_answer\"",

}
},
"required": ["return_type"],

}
}
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