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Abstract

Background

Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise

way in which one or more lipoprotein lipid-related entities account for this relationship

remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through

multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the

aetiology of CHD.

Methods and findings

We conducted a genome-wide association study (GWAS) of circulating non-fasted lipo-

protein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol,

triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymor-

phisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801

cases and 123,504 controls), we performed univariable and multivariable MR analyses.

Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) choles-

terol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included

between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39–73
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y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations

were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the

median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values

for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The

GWAS identified multiple independent SNPs associated at P < 5 × 10−8 for LDL cholesterol

(220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipopro-

tein A-I (440). Between 56%–93% of SNPs identified for each lipid trait had not been previ-

ously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at

P < 5 × 10−8 with more than one lipid-related trait. Assessed individually using MR, LDL cho-

lesterol (odds ratio [OR] 1.66 per 1-standard-deviation–higher trait; 95% CI: 1.49–1.86; P <
0.001), triglycerides (OR 1.34; 95% CI: 1.25–1.44; P < 0.001) and apolipoprotein B (OR

1.73; 95% CI: 1.56–1.91; P < 0.001) had effect estimates consistent with a higher risk of

CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31–2.81; P < 0.001)

retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57–1.27;

P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02–1.23; P = 0.01) becom-

ing weaker. Individual MR analyses showed a 1-standard-deviation–higher HDL cholesterol

(OR 0.80; 95% CI: 0.75–0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77–

0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially

to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipo-

protein metabolism, measures related to the composition of lipoprotein particles are highly

correlated, creating a challenge in making exclusive interpretations on causation of individ-

ual components.

Conclusions

These findings suggest that apolipoprotein B is the predominant trait that accounts for the

aetiological relationship of lipoprotein lipids with risk of CHD.

Author summary

Why was this study done?

• There is uncertainty regarding which lipid or apolipoprotein trait is the predominant

atherogenic agent involved in the aetiology of lipids and coronary heart disease (CHD).

• The elucidation of such is important because not only does it clarify the aetiological

understanding of the pathogenesis of CHD, it also hones the focus on the lipid- or apoli-

poprotein-related trait that should be the focus when developing lipid-modifying

interventions.

What did the researchers do and find?

• We used data on up to 441,016 participants from the UK Biobank to conduct genome-

wide association analyses to find genetic variants reliably associated with lipoprotein

lipid and apolipoprotein concentrations: this led to the identification of multiple inde-

pendent genetic variants, each associated very robustly (at P< 5 × 10−8) with LDL
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cholesterol (220 genetic variants), apolipoprotein B (255 genetic variants), triglycerides

(440 genetic variants), HDL cholesterol (534 genetic variants), and apolipoprotein A–I

(440 genetic variants). Hundreds of these variants identified were novel, to our

knowledge.

• When we explored the potential causal role of these lipids and apolipoproteins in isola-

tion using Mendelian randomisation, we found evidence compatible with LDL choles-

terol, triglycerides, and apolipoprotein B increasing the risk of CHD and HDL

cholesterol and apolipoproteins A-I lowering CHD risk.

• When we examined these lipids and apolipoproteins together in multivariable Mende-

lian randomisation, we found that only apolipoprotein B retained a robust relationship

with the risk of CHD—the effect estimates for all other entities were either substantially

attenuated to the null or reversed in direction.

What do these findings mean?

• The analytical approach in this study implemented through multivariable Mendelian

randomisation simultaneously accounts for genetic associations with lipids and apolipo-

proteins and should therefore provide more reliable insights into what is the underlying

driver of CHD.

• These findings support that, amongst the repertoire of lipoprotein lipids and apolipo-

proteins that we investigated, apolipoprotein B has a fundamental role in the aetiology

of CHD.

Introduction

There is incontrovertible evidence that lipids play a causal role in the aetiology of coronary

heart disease (CHD) [1–3]. Multiple large-scale randomised trials of lipid-modifying therapies

have conclusively shown that lowering of cholesterol in atherogenic lipoproteins leads to a

reduction in risk of CHD [4,5]. These findings have been recapitulated in human genetic stud-

ies using genetic variants robustly associated with low-density lipoprotein (LDL) cholesterol

[6–9].

Each circulating atherogenic lipoprotein particle includes one apolipoprotein B molecule,

but the amount of cholesterol (especially in LDL particles) and the amount of triglycerides

(especially in very low-density lipoprotein [VLDL] particles) can vary extensively between

lipoprotein particles [10–12]. Thus, whilst the concentration of LDL cholesterol and triglycer-

ides quantifies the concentration of these lipid substances carried in circulating lipoproteins,

they do not precisely quantify the number of atherogenic lipoproteins; in contrast, the concen-

tration of apolipoprotein B molecules is directly proportional to the number of circulating ath-

erogenic particles in the blood [11,12]. Evidence from human genetics supports a causal role

of LDL cholesterol, triglycerides, and apolipoprotein B in CHD [13–16]. Whilst it is plausible

that each lipid-related entity does individually play a causal role, it is also feasible that one trait

predominates and ultimately accounts for the relationship of lipoprotein particle entities. Elu-

cidating the comparative role of lipoprotein lipids in the aetiology of CHD has important

repercussions not only in terms of a clearer understanding of the underlying pathophysiology

but also in terms of which biomarker(s) should be the focus of lipid-modifying therapeutics,
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could provide the best surrogate endpoint for honing down to the most effective agents to

enter into event trials, and might have more application in the clinical setting.

Disentangling the relationships of atherogenic lipoprotein lipids and risk of CHD is nontrivial,

given the correlated nature of these traits [17,18]. From the perspective of which trait has the

strongest association with cardiovascular risk, meta-analyses have identified that apolipoprotein B

has a comparatively higher relative risk than that derived from LDL cholesterol [19]. The inclusion

of apolipoprotein-B–related measures leads to modest incremental increases in predictive perfor-

mance [20]. Pooled data from over 500,000 individuals across 44 cohorts identified non-high–

density lipoprotein (non-HDL) cholesterol (an approximation to the number of apolipoprotein-

B–containing particles) to strongly associate with risk of incident cardiovascular disease [21].

When the concentrations of apolipoprotein B and LDL cholesterol are discordant in individuals,

apolipoprotein B has a stronger association with risk of cardiovascular disease (CVD) than LDL

cholesterol [22]. This is of clinical relevance given that it is estimated that more than one-quarter

of the general population has meaningful discordant apolipoprotein B and LDL cholesterol values,

with greater evidence of such discordance in individuals with metabolic risk factors such as obe-

sity or type 2 diabetes [23]. Notably, the 2018 American College of Cardiology/American Heart

Association (ACC/AHA) guidelines from the US [24] do not recommend routine measurement

of apolipoprotein B in risk prediction, whereas the 2019 European guidelines from the European

Society of Cardiology/European Atherosclerosis Society (ESC/EAS) [25] do recommend that all

persons should have apolipoprotein B measured, if available.

In genetic analyses, a similar ‘discordance’ analytical approach can help to elucidate the

comparative causal roles of lipid-related traits on CHD through the selection of genetic vari-

ants that associate with more than one trait. This can help identify which of the traits has a

predominant influence on risk of CHD. Such studies have identified that, when genetic associ-

ations with LDL cholesterol or triglycerides are discordant with their association with apolipo-

protein B, it is apolipoprotein B that retains the most robust relationship. [15,26] Another

approach is to use Mendelian randomisation (MR), a genetic approach that can facilitate an

assessment of causality under certain assumptions. [27] Conventionally, MR involves the anal-

ysis of individual exposure to outcome relationships. A recently developed extension to MR,

so-called multivariable MR, permits the appraisal of multiple risk factors simultaneously. By

including the genetic associations for multiple exposures in the same model, multivariable MR

can elucidate which traits retain a causal relationship with an outcome of interest through the

genetic protection against conventional confounders including reverse causation, the inherent

correction for measurement error, and the avoidance of collider bias [28].

In this study, we sought to use human genetics to disentangle which one or more of the ath-

erogenic lipid-related traits (apolipoprotein B, LDL cholesterol, and triglycerides) predomi-

nantly accounts for the causal relationship with risk of CHD. We first conducted a de novo

genome-wide association study (GWAS) of lipid-related traits using the UK Biobank (UKBB)

to identify variants robustly associated with each trait. We then conducted MR analyses,

including multivariable MR, to elucidate which of the atherogenic lipid traits is of fundamental

relevance to CHD. Finally, we investigated whether the entity underlying the causal role of ath-

erogenic lipid-related traits in CHD also accounted for the inverse association of HDL-related

phenotypes with CHD.

Methods

Data sources

We used data from the UK Biobank (UKBB) under application #15825 and summary estimates

from CARDIoGRAMplusC4D [29]. Details on the UKBB, including geographical regions,
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recruitment processes, and other characteristics, have been previously described [30]. All indi-

vidual participant data used in this study were obtained from the UKBB study, who have

obtained ethics approval from the Research Ethics Committee (REC; approval number: 11/

NW/0382) and informed consent from all participants enrolled in UKBB.

Lipid traits and data handling

We explored the following traits measured in the UKBB: LDL cholesterol, apolipoprotein B,

triglycerides, HDL cholesterol, and apolipoprotein A-I. Details on sample handling and assays

used have been previously described [31,32].

Lipid-related traits in the UKBB were standardised/normalised using inverse rank-normali-

sation such that the mean was 0 and standard deviation was 1, allowing comparison of effect

estimates between traits.

GWAS of lipid-related traits in UKBB

GWAS analyses were conducted in UKBB participants of European descent based on K-

means clustering (K = 4) after standard exclusions including withdrawn consent, mismatch

between genetic and reported sex, and putative sex chromosome aneuploidy [33]. We identi-

fied single nucleotide polymorphisms (SNPs) associated with each of the lipid-related traits

using the BOLT-LMM (linear mixed model) software[34]. Analyses were adjusted for age, sex,

and a binary variable denoting the genotyping chip individuals were allocated to in UKBB (the

UKBB Axiom array or the UK BiLEVE array). BOLT-LMM employs an LMM to evaluate the

association between genetic variants and phenotypic traits whilst accounting for population

stratification and cryptic relatedness [34]. This approach has been shown to provide higher sta-

tistical power when applied to the approximately 459,000 European samples in the UKBB

study compared to alternative approaches [35]. Further details on genotyping quality control,

phasing, imputation, and association testing have been reported previously [36,37]. We

assigned a SNP as associated with a lipid-related trait of interest through use of a conventional

GWAS threshold (P< 5 × 10−8), and SNPs were binned into loci based on pairwise linkage

disequilibrium (LD; at between-SNP r2 < 0.001), with the SNP with the strongest association

with the trait of interest (as defined by P-value) being retained in each locus. This process (con-

ventionally referred to as ‘LD clumping’) was undertaken for each trait in turn using the soft-

ware PLINK [38], based on a reference panel of 503 Europeans from phase 3 (version 5) of the

1,000 Genomes Project [39]. We defined novel SNPs as those associated with the trait of inter-

est at P< 5 × 10−8 in our analyses in which an association had not been previously reported at

P< 5 × 10−8, within 1 MB and at r2 < 0.001, by the Global Lipids Genetics Consortium [40]

(for LDL cholesterol, triglycerides, and HDL cholesterol) or by Kettunen and colleagues [41]

(for apolipoprotein B or apolipoprotein A-I).

Synthesis and characterisation of genetic instruments

SNPs associating with lipid-related traits at conventional GWAS thresholds (P< 5 × 10−8)

were taken forward to generate genetic instruments for each phenotype. A genetic instrument

consists of one or more genetic variants that has characteristics that enable its use as an instru-

mental variable in MR [27,42,43]. We characterised the genetic instruments in 2 ways. First, to

characterise the ‘specificity’ of individual SNPs included in each genetic instrument, we eluci-

dated how many SNPs associated with lipid or apolipoprotein traits other than the primary

lipid trait of interest at conventional GWAS thresholds of significance (P< 5 × 10−8) and used

this information to generate a Venn diagram. Further LD clumping was undertaken to define

the unique number of overlapping genetic loci between all 5 traits to be depicted in the Venn
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diagram. Second, we characterise instrument ‘specificity’ (i.e., the degree to which genetic

instruments for one lipid or apolipoprotein trait also associate with other traits) by taking per-

allele SNP estimates from our GWAS for each lipid trait and conducting inverse variance

weighted regressions on these summary estimates to elucidate the association of genetic instru-

ments across the various lipid-related traits—these estimates are presented as standardised dif-

ferences per 1-standard-deviation–higher genetically predicted trait. Whilst we recognise that

this approach may be prone to inflation (leading to potentially biased estimates owing to the

derivation of genetic instruments for lipids and apolipoprotein traits occurring in the same

data set as that in which their associations are subsequently estimated with other traits), the

primary motivation is to characterise the associations of lipid instruments with the lipid-

related traits: we do not interpret these as formal instrumental variable estimates. We also esti-

mated the correlations between the beta coefficients for the genetic instruments used in the

multivariable analyses.

Outcome definition in CARDIoGRAMplusC4D

Cases in CARDIoGRAMplusC4D were defined as myocardial infarction, acute coronary syn-

drome, chronic stable angina, or coronary stenosis >50% [29], which we collectively describe

in this study as CHD.

Genetic analyses to elucidate potential causality

We first conducted univariable MR analyses for each lipid-related trait. For this, we harmo-

nised SNPs identified from our GWASs of lipoprotein lipid traits in the UKBB to those SNPs

available in CARDIoGRAMplusC4D by either matching the SNP directly or by selecting

proxy SNPs in high LD (r2 > 0.8). This led to a small drop in the number of SNPs being avail-

able for MR, with a median of 93% SNPs identified in GWASs available for MR (the numbers

available for each trait are provided in Table 1). We used the inverse variance weighted

approach, which, in brief, takes the form of a linear regression of the SNP–outcome association

regressed on the SNP–exposure association weighted by the inverse of the square of the stan-

dard error of the SNP–outcome association, with the intercept constrained at the origin.

We next conducted multivariable MR, which is a statistical approach that allows for the

association of SNPs with multiple phenotypes to be incorporated into the analysis, permitting

an estimation of the direct effect of each phenotype on the outcome (i.e., an effect that is not

mediated by any other factor in the model [28]); see S1 Fig for further details. In this manu-

script, we use the term ‘adjusted’ in the context of multivariable MR to mean ‘direct’ effects,

i.e., the effect of a lipid trait on CHD whilst accounting for either mediation or confounding

by another trait included in the model. For the multivariable MR analyses, we fitted a model

with apolipoprotein B, LDL cholesterol, and triglycerides to identify which one or more traits

appeared to be responsible for the effect of ‘atherogenic’ lipid-related traits on risk of CHD.

We then took the atherogenic trait(s) that retained an effect on CHD in the multivariable MR

model forward and further adjusted for apolipoprotein A-I and HDL cholesterol to assess the

potential causal roles of HDL-related phenotypes in the development of CHD. In the setting of

multivariable MR, we included all GWAS-associated SNPs for all traits in the model. This

meant that there were differing numbers of SNPs in the 2 multivariable models tested.

We characterised instrument strengths in both the univariable and multivariable MR set-

tings as follows: for the univariable estimates, we generated the mean F-statistic, using the

approximation described by Bowden and colleagues [44]. For the multivariable estimate, we

generated the conditional F-statistic [28,45]. Further details are provided in S1 Text.
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Software

The BOLT-LMM software was used to undertake GWAS [34]. This does not require the use of

principal components in GWAS to account for population structure because this is taken into

account using an LMM as performed by the software [35]. MR analyses were conducted using

the ‘TwoSampleMR’ R package [46]. Manhattan and forest plots were generated using the

‘ggplot2’ and ‘metafor’ packages, respectively [47,48].The Venn diagram was generated using

the online tool available at http://bioinformatics.psb.ugent.be/webtools/Venn (accessed 13th

August 2019).

Interpretation of findings

Whilst we desisted from dichotomising results of analyses purely on the basis of a P-value into

being ‘significant’ or not [49,50], as a means of grading the strength of evidence against the

null hypothesis, in both the univariable and multivariable MR analyses, we used a two-sided

alpha of 0.01 on the basis of testing 5 lipid-related traits. Such a Bonferroni adjustment to

account for multiple testing can be considered overly conservative, given the high correlation

between the lipid-related traits.

Sensitivity analyses

In sensitivity analyses, we conducted univariable MR analyses robust to some forms of poten-

tial unbalanced horizontal pleiotropy [51] (horizontal pleiotropy being the process by which

genetic variants used to instrument an exposure also associate with other traits that influence

the outcome, a form of violation of the exclusion restriction assumption of instrumental vari-

able analyses [52]) using weighted median [53], weighted mode [54], and MR-Egger [55]

approaches. To further account for potential unbalanced horizontal pleiotropy in the multivar-

iable MR analysis, we also conducted multivariable MR-Egger analyses [56,57]. To identify

Table 1. Genetic variants identified for each trait in the UKBB.

Trait Number with Trait

Measured in the UKBB

with GWAS Genotyping

Mean Value

(Standard

Deviation)

Number of SNPs

Identified in GWAS

(P< 5 × 10−8)

Number (%)

of Novel�

SNPs

Number (%) of SNPs

Aligned to CARDIoGRAM-

plusC4D

F-statistic

(Overall,

Conditional)

LDL cholesterol

(mmol/L)

440,546 3.57 (0.87) 220 123 (56%) 209 (95%) 164, 34

Triglycerides

(mmol/L)

441,016 1.50 (1.11)§ 440 339 (77%) 409 (93%) 116, 78

Apolipoprotein B

(g/L)

439,214 1.03 (0.24) 255 203 (80%) 234 (92%) 153, 36^

HDL cholesterol

(mmol/L)

403,943 1.45 (0.38) 534 383 (72%) 490 (92%) 124, 67

Apolipoprotein

A-I (g/L)

393,193 1.54 (0.27) 440 407 (93%) 407 (93%) 120, 62

�We defined novel SNPs as those associated with the trait of interest at P < 5 × 10−8 in which an association had not been previously reported at P < 5 × 10−8, within 1

MB and at r2 < 0.001 by the Global Lipids Genetics Consortium [40] (for LDL cholesterol, triglycerides and HDL cholesterol) or by Kettunen and colleagues [41] (for

apolipoprotein B or apolipoprotein A-I).
§Median (IQR) presented for triglycerides, owing to the non-Gaussian distribution.
^The conditional F-statistic for apolipoprotein B when included in the multivariable MR model with LDL cholesterol and triglycerides was 36, and in the multivariable

MR model that included HDL cholesterol and apolipoprotein A-I, it was 66.

Abbreviations: GWAS, genome-wide association study; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein; MR, Mendelian

randomisation; SNP, single nucleotide polymorphism; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003062.t001
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whether multivariable MR estimates derived from our de novo GWAS are comparable to

those previously published [13] using prior GWAS consortia data for lipoprotein lipids [40],

we repeated the analyses excluding apolipoprotein B from the models. Finally, we adjusted for

fasting time in the derivation of the genetic instruments (by including fasting hours as a covar-

iate in the GWAS). This is because fasting status might impact the lipid or lipoprotein concen-

trations [58], with a potential effect on the SNP–lipid trait associations, thus potentially

influencing the MR estimates.

Protocol

Our study did not have a prospective protocol or analysis plan. Analyses were discussed in

June 2019 as described above (i.e., to conduct a GWAS of lipids and apolipoproteins and then

to test their causal relevance in multivariable MR). There were no data-driven changes to anal-

yses. Following peer review, we (i) repeated the GWAS of lipids and apolipoproteins with

adjustment for fasting status and repeated MR analyses using genetic instruments from such

GWAS; (ii) repeated multivariable MR including LDL cholesterol or triglycerides (rather than

apolipoprotein B) to demonstrate a residual effect of HDL cholesterol, in keeping with pub-

lished literature; (iii) added multivariable MR-Egger as a sensitivity analysis [56]; and (iv)

added phenotypic and genetic correlations between the lipid and apolipoprotein traits. We

completed the STROBE checklist (S1 STROBE Checklist).

Results

UKBB data set

The lipid and apolipoprotein traits were measured in 393,193 to 441,016 individuals in the

UKBB that have GWAS genotyping (Table 1). The mean age of study participants was 56.9 y

(range 39–73 y), and 54.2% were women. The mean (standard deviation) lipid concentrations

were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the

median triglycerides was 1.50 (IQR = 1.11) mmol/L. The values for apolipoproteins B and A-I

were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. Phenotypic correlations between the

traits varied from Pearson’s R −0.49 (between HDL cholesterol and triglycerides) and 0.96

(between LDL cholesterol and apolipoprotein B) (S1 Table).

GWAS of lipoprotein lipid and apolipoprotein traits

In the GWAS, we identified a large number of independent SNPs associated at P< 5 × 10−8 with

each lipid-related trait: 220 SNPs (of which 56% had not been previously reported) associated

with LDL cholesterol, 440 (77% novel) for triglycerides, 255 (80% novel) for apolipoprotein B, 534

(72% novel) for HDL cholesterol, and 440 (93% novel) for apolipoprotein A-I (Fig 1 and Table 1).

Full details of the SNPs associated with the lipid-related traits are provided in S2–S6 Tables.

A considerable number (352 out of a total 846 clumped SNPs, i.e., 41.6%) of SNPs used in

each of the lipid-related genetic instruments showed associations at conventional GWAS sig-

nificance (P< 5 × 10−8) with other lipid traits (Fig 2A). On exploring the relationships of the

genetic instruments with each lipid-related trait, we identified widespread associations (Fig

2B). For example, in addition to its association with apolipoprotein B, the genetic instrument

for apolipoprotein B showed strong positive associations with LDL cholesterol and triglycer-

ides and inverse associations with HDL cholesterol and apolipoprotein A-I. Correlations

between all genetic variants used as instruments ranged between Pearson’s R of −0.57 (between

HDL cholesterol and triglycerides) and 0.97 (between LDL cholesterol and apolipoprotein B)

(S7 Table).
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Appraisal of LDL cholesterol, triglycerides, and apolipoprotein B

On individual assessment through conventional MR, we identified LDL cholesterol, triglycer-

ides, and apolipoprotein B to have effect estimates consistent with a higher risk of CHD, using

data from CARDIoGRAMplusC4D (with up to 60,801 cases) (Fig 3A). A 1-standard-devia-

tion–higher LDL cholesterol had an odds ratio (OR) of 1.66 (95% CI: 1.49–1.86; P< 0.001) for

CHD, with the corresponding value for triglycerides being OR 1.34, 95% CI: 1.25–1.44, and

P< 0.001 and those for apolipoprotein B being OR 1.73, 95%CI: 1.56–1.91, and P< 0.001.

Sensitivity analyses using methodological approaches that take into account potential genetic

pleiotropy led to no substantive change in these estimates (S2 Fig).

When LDL cholesterol, triglycerides, and apolipoprotein B were assessed together in multi-

variable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31–2.81; P< 0.001) retained a robust,

potentially causal relationship with CHD (Fig 3A). The point estimate for LDL cholesterol

Fig 1. Manhattan plots showing findings from the GWAS of lipoprotein lipid-related traits in the UKBB. Horizontal dotted line illustrates the Y-axis value

conventionally used to denote a SNP that reaches statistical significance in the GWAS, i.e., at P< 5 × 10−8. GWAS, genome-wide association study; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; SNP, single nucleotide polymorphism; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003062.g001
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reversed on mutual adjustment to yield an adjusted OR of 0.85 (95% CI: 0.57–1.27; P = 0.44).

The estimate for triglycerides was weakened substantially (adjusted OR 1.12; 95% CI: 1.02–

1.23; P = 0.01).

Appraisal of HDL cholesterol and apolipoprotein A-I

Individual analysis using conventional MR showed both HDL cholesterol and apolipoprotein

A-I to have effect estimates consistent with a lower risk of CHD (Fig 3B). The estimate for a

1-standard-deviation–higher HDL cholesterol was OR 0.80 (95% CI: 0.75,–0.86; P< 0.001),

and for apolipoprotein A-I, it was OR 0.83 (95% CI: 0.77–0.89; P< 0.001). The effect estimates

for both HDL cholesterol and apolipoprotein A-I were diminished when using methodologies

that are more robust to potential pleiotropy of the genetic variants used in the analysis

(S2 Fig).

On appraisal in a multivariable MR analysis that included apolipoprotein B (which retained

evidence of a potentially causal relationship with CHD on mutual genetic adjustment for LDL

cholesterol and triglycerides), the effect estimates of both HDL cholesterol and apolipoprotein

A-I diminished and were not distinguishable from the null (Fig 3B). The adjusted estimate for

HDL cholesterol was OR 0.91 (95% CI: 0.74–1.12; P = 0.36), and for apolipoprotein A-I, it was

OR 0.94 (95% CI: 0.76–1.17; P = 0.59). When adjusted for HDL cholesterol and apolipoprotein

A-I, there was robust evidence for a potential causal role of apolipoprotein B in the develop-

ment of CHD (adjusted OR 1.68; 95% CI: 1.54–1.84; P< 0.001).

Fig 2. Characteristics of genetic instruments developed for lipoprotein lipid-related traits. (A) Overlap of SNPs and (B) associations with lipids and apolipoproteins.

In Panel A, SNPs are grouped according to whether they associate with only the primary lipid-related trait of interest or whether they associate with other traits, based

on P< 5 × 10−8. Panel B displays the associations of genetic instruments with lipid-related traits using the inverse variance weighting approach. Whilst we note the

potential for overfitting of estimates displayed in Panel B, we present these data for illustrative purposes; the MR estimates presented in Fig 3 use a two-sample approach

(with no overlapping data). CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomisation; NA, not applicable;

SD, standard deviation; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003062.g002
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Fig 3. Univariable and multivariable MR of so-called (A) atherogenic and (B) protective lipoprotein lipids and apolipoproteins and risk of CHD. In both (A)

and (B), univariable MR estimates were derived using the inverse variance weighted approach. For a more comprehensive repertoire of estimates derived from

univariable MR approaches, please see S2 Fig. CHD, coronary heart disease; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein;

MR, Mendelian randomisation; SD, standard deviation; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003062.g003
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The F-statistics for all lipid-related genetic instruments in both the univariable and multi-

variable MR settings were consistent with an absence of weak instrument bias (Table 1).

Sensitivity analyses

Adjustment for fasting time in the GWAS of lipids and apolipoproteins led to negligible alter-

ations in the effect estimates in both univariable and multivariable MR (S8 and S9 Tables). Use

of multivariable MR-Egger led to very similar effect estimates as those derived from multivari-

able IVW MR (S10 and S11 Tables). Repeating the same multivariable MR models excluding

apolipoprotein B led to findings similar to those identified in prior studies [13], i.e., that in

multivariable MR analyses including LDL cholesterol and/or triglycerides, a weak residual

inverse relationship of HDL cholesterol with CHD was seen (S12 and S13 Tables). Notably,

such HDL cholesterol associations diminished to include the null on univariable MR

approaches that are more robust to unbalanced horizontal pleiotropy (S2 Fig) and on multi-

variable MR that includes apolipoprotein B and multivariable MR-Egger (Fig 3, S10 and S11

Tables).

Discussion

In this study, we explored the causal relationships of lipids and apolipoproteins with risk of

CHD by conducting a GWAS of lipoprotein lipid-related traits in approximately 440,000

UKBB participants and taking forward genetic instruments into multivariable MR using data

from the CARDIoGRAMplusC4D consortium, including over 60,000 cases of CHD. Our prin-

cipal findings are that after taking into account the effects of apolipoprotein B, the relation-

ships of other lipid-related entities with risk of CHD attenuated markedly to the null. In

contrast, the relationship of apolipoprotein B with risk of CHD was robust to adjustment for

other traits. Our study therefore provides empirical evidence from human genetics that apoli-

poprotein B is the necessary element in order for lipoprotein lipids to exert their causal effect

on risk of CHD—in other words, apolipoprotein B is a critical entity that underlies the rela-

tionship of lipid traits and risk of CHD. This adds further evidence to support the hypothesis

that it is the number of atherogenic lipoprotein particles indexed by apolipoprotein B rather

than the amount of circulating cholesterol or triglycerides per se that is the important driver of

CHD [26]. In other words, changes in cholesterol or triglycerides that are not accompanied by

commensurate changes in apolipoprotein B may not lead to altered risks of CHD.

Our GWAS identified many hundreds of variants associated with the major lipid-related

traits, with most SNPs identified being novel, to our knowledge. This is likely because our

GWAS was not only larger in sample size than prior GWAS of lipoprotein lipid traits [40] but

also used a single study. Previous GWASs [40] of lipids were conducted in multiple individual

studies that were then meta-analysed, thus introducing a loss of power due to between-study

heterogeneity. Many SNPs identified for one lipid-related trait also showed associations with

other lipid traits, highlighting their pleiotropic nature and/or the high degree of inter-related-

ness amongst plasma lipoproteins and their lipid constituents. Individual appraisal using uni-

variable MR showed widespread effects of all lipid-related traits, with LDL cholesterol,

triglycerides, and apolipoprotein B each having effect estimates consistent with a higher risk of

CHD. These findings recapitulate those reported in previous studies [8,9,13,14], leading to the

contemporary view that each atherogenic lipid trait might play a causal role in vascular disease.

When we estimated the direct (i.e., adjusted) effect of these traits using multivariable MR (see

S1 Fig for further details), only apolipoprotein B retained a robust effect with CHD, with the

effect of LDL cholesterol being reversed and that for triglycerides being largely diminished,

leaving only a weak residual effect. The apparent protective associations of HDL cholesterol
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and apolipoprotein A-1, present on univariable MR analyses, were also markedly attenuated

when direct effects conditional on apolipoprotein B were estimated. Taken together, these

findings indicate that amongst the lipid-related traits we investigated, it is apolipoprotein B,

and thus the number of atherogenic lipoprotein particles, that predominates as the underlying

cause of CHD.

How do these findings enhance the evidence base relating to lipid traits and vascular dis-

ease? Large-scale observational [59], interventional [4,5], and genetic [6–9] studies support

LDL cholesterol as being causal in the aetiology of CHD. In recent years, genetic studies have

provided evidence in support of triglycerides [13,14] also playing a causal role. Both LDL cho-

lesterol and triglycerides are carried in atherogenic lipoproteins, each containing an apolipo-

protein B molecule. Recent reviews [11,12,60,61] point to apolipoprotein B potentially being

the necessary entity for atherosclerosis to occur, for example, through the ‘response to reten-

tion’ hypothesis, in which apolipoprotein-B–containing particles become trapped in the tunica

intima of the arterial wall [62]. Our study builds on recent findings [26] to provide further

empirical evidence that supports this hypothesis, but our findings do not discredit the causal

roles that LDL cholesterol or triglycerides play in vascular disease. This is because apolipopro-

tein B does not occur in physiological isolation [61], but rather is always accompanied by cho-

lesterol and triglycerides. In light of this, our findings pinpoint that it is apolipoprotein B that

is necessary for lipid-mediated atherogenesis to occur. Indeed, our findings from multivariable

MR are consistent with apolipoprotein B being an essential element allowing the atherogenic

effects of LDL cholesterol and triglyceride to be expressed.

How do these findings aid us in the context of developing drugs that modify lipoprotein

lipid concentrations and predicting their effects on risk of CHD? Drug-target MR studies

show that, for example, modifying triglycerides through therapies such as angiopoietin-like

proteins 3 and 4 (ANGPLT3/4) inhibition may represent an emerging approach to lowering

the risk of CHD [63–65]. Our findings do not run contrary to these conclusions; rather, they

shed light on whether the concentrations of cholesterol and/or triglycerides that are carried by

apolipoprotein-B–containing lipoproteins contribute to risk of CHD beyond that encoded by

apolipoprotein B. Based on these and recent data [15,26], the primary focus of lipid-modifying

therapies ought to be the reduction in number of atherogenic lipoproteins (as measured by

apolipoprotein B) rather than the reduction in cholesterol or triglycerides. This is especially

the case when drugs have discrepant effects across these lipid traits [10,15,66]. Thus, in predict-

ing the cardiovascular efficacy of a lipid-modifying therapeutic, apolipoprotein B can, all

things being equal, be used as a reliable surrogate marker for the expected relative risk reduc-

tion in CHD—assuming, of course, that the drug under investigation does not display adverse

events that arise either from target-mediated mechanisms or from off-target effects (notably,

both can be investigated in human genetics studies [67]). In other words, our findings bolster

the potential use of total circulating concentrations of apolipoprotein B to quantify the risk of

CHD across a broad range of apolipoprotein-B–containing lipoprotein particles [25].

We note that this interpretation is in keeping with 2 important prior investigations that

examined the concordance of CHD associations between SNPs associated with apolipoprotein

B, LDL cholesterol [15], and triglycerides [26]. Indeed, one of these prior investigations con-

ducted a form of multivariable MR analysis and obtained similar findings to those we report in

the present study [26]. Importantly, the analysis that we conducted and report herein builds

on these prior investigations by conducting a de novo GWAS of lipoprotein lipids and apoli-

poproteins in a large number of individuals and thus expanding on the numbers of SNPs used

as instruments for each lipid-related trait but also including the full repertoire of GWAS-asso-

ciated SNPs for apolipoprotein B. The derivation of genetic instruments from the same data

set in similar numbers of individuals should facilitate a fairer representation of the genetic
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architecture of each of the traits included in the multivariable analyses. In addition to these

methodological enhancements and replication of previous studies, our findings also demon-

strate that therapies that seek to modify HDL or apolipoprotein A-I [68] will only have benefi-

cial effects if they also lower apolipoprotein B. Their influence on apolipoprotein B is likely to

account for any effects of therapies aimed at increasing HDL cholesterol or apolipoprotein A-I

on the risk of CHD [66].

The findings that we make have been made available by 2 recent advances: first, the avail-

ability of large-scale lipoprotein lipid phenotyping and GWAS genotyping in the UKBB, pro-

viding sufficiently large numbers to permit identification of robust genetic variants (and

therefore suitable genetic instruments) in order to conduct MR of each of the lipid-related

traits. Use of a single study with similar numbers of individuals with measures available for

each lipid-related trait enabled GWAS and the downstream synthesis of genetic instruments

for each trait in which the genetic architecture of each phenotype ought to be similarly repre-

sented, allowing for a more rigorous comparative assessment of the traits in both the univari-

able and multivariable MR setting. Second, methodological developments in MR to include

more than one trait (so-called multivariable MR) allows for direct effects (i.e., the effects of an

exposure on disease, taking into account potential confounding and mediation by other traits)

of multiple exposures to be assessed simultaneously and without the risk that this introduces

forms of bias such as collider bias, in which, for example, conditioning on a potential mediator

or a shared outcome can induce bias [28]. It is this methodological approach that allows the

deduction that we make: that apolipoprotein B plays a critical role in the causal effects of lipid-

related traits with risk of CHD. We note here an important theme that emerges: the discrep-

ancy between our findings and those derived from other MR approaches that hitherto have

been used in contemporary MR studies (reflected by the univariable MR estimates we present

in S2 Fig). Approaches such as MR-Egger and weighted median MR can provide reliable evi-

dence regarding causation even in the presence of confounding through unbalanced horizon-

tal pleiotropy [69]. This is evidenced by the diminution of the HDL cholesterol association

with risk of CHD from inverse variance weighted approaches to MR-Egger (S2 Fig). Impor-

tantly, such univariable MR approaches that are more robust to horizontal pleiotropy notably

do not, with a few exceptions [56,70], allow simultaneous statistical adjustment for multiple

traits. The repertoire of robust univariable MR approaches [51] that seek to act as sensitivity

analyses for potential unbalanced horizontal pleiotropy each make a different series of assump-

tions [53]. In the situation when horizontal pleiotropy is present in a dose–response manner

(i.e., on average, SNPs that associate with higher levels of the exposure of interest also associate

with higher/lower degrees of horizontal pleiotropy), this violates the ‘InSIDE’ assumption [55],

and the MR analyses yield biased estimates. This may be why the MR estimates for LDL choles-

terol and triglycerides remain seemingly robust to MR-Egger and weighted median MR

approaches. In this context, multivariable MR analysis can help when the traits included in the

analysis account fully for the unbalanced, dose-related, horizontal pleiotropy. In the scenario

that we investigate, apolipoprotein B may serve this role, and the multivariable MR results

accounting for this support the conclusion that apolipoprotein B has a fundamental role in the

atherogenic component of CHD risk.

Our study has interpretational challenges that may be conceived of as limitations. For

example, a naïve interpretation of our findings would be that apolipoprotein B confounds the

relationship of LDL cholesterol and triglycerides with risk of CHD, but this would be to neglect

evidence gleaned over a century of scientific investigations into atherosclerosis [71]. In our

interpretation, these findings from the multivariable MR, together with established physiologi-

cal principles of lipoprotein structure and composition, are consistent with apolipoprotein B

being a critical component in the entrapment of atherogenic lipoprotein particles in the tunica
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intima in order to initiate and maintain lipid accumulation in the development of atheroscle-

rosis [11,12,60]. Thus, our findings are in keeping with established understanding of the devel-

opment of atherosclerosis [72] but pinpoint the crucial role of apolipoprotein B in the

pathogenesis as a key molecule facilitating the entrapment of atherogenic lipoprotein particles

in the intima. In other words, our multivariable MR does not suggest that apolipoprotein B

confounds the LDL cholesterol or triglycerides relationship, but rather that apolipoprotein B is

critical for the atherogenic effects of lipoprotein lipids. An additional limitation is that In rela-

tion to studies of lipoprotein metabolism, a fundamental challenge is that lipoprotein metabo-

lism is a continuum in the circulation, particularly in relation to apolipoprotein-B–containing

particles that are downstream metabolic constructs of VLDL particles secreted from the liver

[73]. Thus, all measures related to the composition of these particles are highly correlated [74].

This creates an inherent difficulty in making exclusive interpretations on individual structural

components. Finally, the Venn diagram in Fig 2A gives the impression that SNPs appear to

cluster into discrete silos based on associations with lipids and apolipoproteins. However, this

pictorial illustration is based on arbitrary thresholds of association, and it would be unwise to

interpret SNPs in each silo of the Venn diagram to mean exclusivity of association. To illus-

trate this empirically, there are 13 SNPs that appear to solely associate with apolipoprotein B in

Fig 2. As illustrated in S14 Table, these 13 SNPs also associate with LDL cholesterol (with the

weakest LDL-cholesterol–associating SNP doing so at P< 0.001), all in a directionally consis-

tent way to their association with apolipoprotein B. Thus, whilst it may be tempting to generate

instruments based on SNPs that fall into these visually discrete silos (in so-called ‘discordance

analyses’), they are likely to be directionally pleiotropic. Indeed, given the physiological rela-

tionships of lipids and apolipoproteins, it could be argued that for a SNP to appear in the

extremities of the Venn diagram (i.e., to be extremes in terms of their differential associate

with one lipid-related trait as compared to another), such a SNP would likely possess proper-

ties that lead to this situation through pleiotropy, rendering MR estimates derived from such a

SNP more vulnerable to producing misleading findings. For these reasons, we consider the

findings from our multivariable MR analyses to be more trustworthy than MR analyses based

on subsetting SNPs on the basis of associations with traits at arbitrarily defined P-value

thresholds.

In conclusion, our findings demonstrate that apolipoprotein B is of critical importance in

facilitating the causal effects of lipoprotein lipid traits and risk of CHD.
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(PDF)

S1 Fig. Multivariable MR: (A) conventional MR, (B) conventional MR confounded by plei-

otropy, (C) multivariable MR. (A) In conventional MR, in the absence of confounding of the

genetic instrument and with exclusion restriction, a suitably powered analysis can lead to

causal deductions. (B) In this example, SNPs used in the LDL cholesterol instrument also asso-

ciate with apolipoprotein B (apoB), leading to potential confounding of the estimate of LDL

cholesterol and risk of CHD. (C) In multivariable MR, genetic instruments for each of the

traits under investigation are used together with the corresponding associations of SNPs with

each trait in the analysis. The analysis yields a causal estimate for each trait taking into account

the relationship of that trait and the genetic variants with the other traits in the analysis. These

figures are schematic representations and should not be interpreted as formal directed acyclic

graphs. apoB, apolipoprotein B; CHD, coronary heart disease; CI, confidence interval; HDL,

high-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomisation; SNP,
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S2 Fig. Univariable MR estimates for individual lipid and apolipoprotein traits. Effect esti-

mates are ORs of CHD per 1-standard-deviation–higher genetically instrumented trait, using

a range of univariable MR approaches (see Methods for further details). Plot generated using

Stata SE 13.1 (StataCorp). CHD, coronary heart disease; CI, confidence interval; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomisation; nSNPs,

number of single nucleotide polymorphisms; OR, odds ratio.
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S1 Table. Phenotypic correlations between lipid-related traits in UKBB. HDL, high-density

lipoprotein; LDL, low-density lipoprotein; UKBB, UK Biobank.
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S2 Table. GWAS results for LDL cholesterol. Beta, regression coefficient; BP, base position;

CHR, chromosome; EAF, effect allele frequency; Gene, nearest gene; GWAS, genome-wide

association study; INFO, imputation score; LDL, low-density lipoprotein; Novel signal?, asso-

ciation with P< 5 × 10−8 not previously detected by the Global Lipids Genetics Consortium

[40] based on<1 mb and r2 < 0.001; P, P-value; SE, standard error of regression coefficient;

SNP, single nucleotide polymorphism.
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S3 Table. GWAS results for triglycerides. Beta, regression coefficient; BP, base position;

CHR, chromosome; EAF, effect allele frequency; Gene, nearest gene; GWAS, genome-wide

association study; INFO, imputation score; Novel signal?, association with P< 5 × 10−8 not

previously detected by the Global Lipids Genetics Consortium [40] based on<1 mb and r2 <

0.001; P, P-value; SE, standard error of regression coefficient; SNP, single nucleotide polymor-

phism.

(XLSX)

S4 Table. GWAS results for apolipoprotein B. Beta, regression coefficient; BP, base position;

CHR, chromosome; EAF, effect allele frequency; Gene, nearest gene; GWAS, genome-wide

association study; INFO, imputation score; Novel signal?, association with P< 5 × 10−8 not

previously detected by the Global Lipids Genetics Consortium [40] based on<1 mb and r2 <

0.001; P, P-value; SE, standard error of regression coefficient; SNP, single nucleotide polymor-

phism.

(XLSX)

S5 Table. GWAS results for HDL cholesterol. Beta, regression coefficient; BP, base position;

CHR, chromosome; EAF, effect allele frequency; Gene, nearest gene; GWAS, genome-wide

association study; HDL, high-density lipoprotein INFO, imputation score; Novel signal?, asso-

ciation with P< 5 × 10−8 not previously detected by the Global Lipids Genetics Consortium

[40] based on<1 mb and r2 < 0.001; P, P-value; SE, standard error of regression coefficient;

SNP, single nucleotide polymorphism.
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S6 Table. GWAS results for apolipoprotein A-I. Beta, regression coefficient; BP, base posi-

tion; CHR, chromosome; EAF, effect allele frequency; Gene, nearest gene; GWAS, genome-

wide association study; INFO, imputation score; LDL, low-density lipoprotein; Novel signal?,

association with P< 5 × 10−8 not previously detected by the Global Lipids Genetics Consor-

tium [40] based on<1 mb and r2 < 0.001; P, P-value; SE, standard error of regression
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