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Abstract African-American motorists may adjust their driving in response to increased 

scrutiny by law enforcement. We develop a model of police stop and motorist driving behavior 

and demonstrate that this behavior biases conventional tests of discrimination. We empirically 

document that minority motorists are the only group less likely to have fatal motor vehicle 

accidents in daylight when race is more easily observed by police, especially within states with 

high rates of police shootings of African-Americans. Using data from Massachusetts and 

Tennessee, we also find that African-Americans are the only group of stopped motorists 

whose speed relative to the speed limit slows in daylight. Consistent with the model prediction, 

these shifts in the speed distribution are concentrated at higher percentiles of the distribution. 

A calibration of our model indicates substantial bias in conventional tests of discrimination 

that rely on changes in the odds that a stopped motorist is a minority.  
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1. Introduction 

The possibility that police treat minority motorists differently than other groups has become 

a source of protest and social unrest.1  The public’s most frequent interaction with police is 

through motor vehicle enforcement, which can serve as the precipitating event for more 

serious actions like searches, arrests or use-of-force. Many states have mandated the collection 

and analysis of traffic stop data for assessing racial differences in police stops.2 However, these 

analyses may provide misleading statistics if minority motorists rationally choose to drive more 

slowly and carefully in response to real or perceived discrimination. Such behavioral changes 

would reduce minority representation in samples of traffic stops and bias estimates of racial 

disparities. Similar responses to adverse treatment are documented in several contexts 

including labor market, health, and orchestra auditions (see Arcidiacono, Bayer and Hizmo 

2010; Institute of Medicine 2003; and Goldin and Rouse 2000). However, work on behavioral 

responses to police discrimination is mostly absent in the existing literature.3 Research 

documents decreasing criminal behavior as police enforcement rises, and if discrimination is 

interpreted as increased scrutiny by police, our paper also contributes to this literature.4 

 We develop a simple model of motorist infractions and police stops in which some 

motorists choose not to commit infractions. Although discrimination is typically assumed to 

                                                      
1 See Arthur et al. (2017), Goff et al. (2015), and Nix et al. (2017) for recent media coverage 

on police shootings.  
2 23 states collect and analyze traffic stop data. Also see policy initiatives like Obama’s Task 

Force on 21st Century Policing as well as funding made available via the National Highway 

Safety Traffic Authority (NHTSA). See NHTSA SAFETEA-LU and Fast Act S. 1906 funding 

for FY 2006 to 2019. 
3 The key exception is Knowles, Persico and Todd (1999) and Persico and Todd (2008) who 

develop models of carrying contraband, also see discussion in Persico (2009). The key 

difference between our model and theirs is that carrying contraband is a choice that is 

unobserved by police, while infraction severity is observed. 
4 For example, see notably Levitt (1997), Evans & Owens (2007), Chalfin and McCrary (2018), 

and Mello (2019). 
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increase the minority share of stops, we demonstrate that discrimination actually has an 

ambiguous effect on the share of minority traffic stops in models that capture motorist driving 

behavior. The ambiguity arises because the higher probability of stop induces motorists with 

relatively weak preferences for committing infractions to become inframarginal and choose 

not to infract. Under reasonable assumptions, the effect of motorists choosing to not infract 

can dominate the increased likelihood of being stopped as discrimination rises. Inframarginal 

motorists also impact the distribution of stopped motorists over infraction level because those 

motorists would have committed less severe infractions. Nonetheless, by imposing additional 

assumptions on the distribution of motorists, we demonstrate that the direct effect of 

motorists decreasing their infraction level as discrimination rises dominate the effect of an 

increasing share of inframarginal motorists at more severe infraction levels. We utilize this 

result by examining the entire distribution of stopped motorist speeds in our empirical work. 

 Any empirical analysis of motorist response to police behavior must account for the 

role that the police stop decision itself plays in shaping the available data. Traffic stop data 

represents samples of motorists who have committed an infraction of some sort and who have 

been stopped by police. Thus, the composition of the sample is selected based on police 

decisions. We attempt to separate motorist behavior from selection issue in three ways:  (1) 

We examine the racial composition of fatal traffic accidents using lower accident rates as an 

indicator of safer driving because accidents are not selected based on police decision making; 

(2) We exploit our second theoretical result pertaining to unambiguous downward shift in 

infraction severity at higher percentiles in the infraction distribution by examining the upper 

portion of the speed distribution of stopped motorists, and (3) We calibrate our model to the 

speed distribution and racial composition of traffic stops and then calculate police stop costs. 

We also simulate counterfactual test statistics where motorists are not allowed to respond to 

changes in stop costs. 

 In addition to selection, we must also address a classic challenge faced by nearly all 

traffic stop studies where we do not observe the distribution of motorists who are committing 
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traffic infractions.5 We address this counterfactual problem using a popular approach 

developed by Grogger and Ridgeway (2006), the “Veil of Darkness” (VOD). VOD leverages 

seasonal variation in daylight to compare stops made at the same time of day and day of week 

where some stops were in daylight and others in darkness. The VOD operates under the 

premise that motorist race is less easily identified by police after sunset, but that the 

distribution of motorists committing infractions at a given time of day is unaffected by the 

timing of sunset. With over 22 applications across the country, VOD has quickly become the 

gold standard for assessing racial differences in police traffic stops, and so the validity of this 

approach has significant policy implications.6 Regardless, our findings are broadly applicable 

to any test of discrimination in the decision to stop a minority motorist.  

 For our first empirical analysis, we use accident data to obtain a population that is 

not directly impacted by traffic stop decisions following Alpert, Smith, and Dunham (2003).7 

                                                      
5 Exceptions exist where researchers observe a representative sample of motorists (Lamberth 

1994; Lange et al. 2001; McConnell and Scheidegger 2004; Montgomery County MD 2002), 

but such approaches are considered prohibitively expensive (Kowalski and Lundman 2007; p. 

168; Fridell et al. 2001, p. 22). Many studies examine vehicle searches where the counterfactual, 

motorists stopped, is observed (Knowles et al. 2001; Dharmapala and Ross 2004; Anwar and 

Fang 2006; Antonovics and Knight 2009; Marx 2018; Gelbach 2018). Also see Arnold, Dobbie 

and Yang (2018) and Fryer (2019) who examine bail and use-of-force, respectively.  
6 Applications include Grogger and Ridgeway (2006) in Oakland, CA; Ridgeway (2009) 

Cincinnati, OH; Ritter (2017) in Minneapolis, MN; Worden et al. (2012) as well as Horace and 

Rohlin (2016) in Syracuse, NY; Renauer et al. (2009) in Portland, OR; Taniguchi et al. (2016a, 

2016b, 2016c, 2016d) in Durham Greensboro, Raleigh, and Fayetteville, North Carolina; 

Masher (2016) in New Orleans, LA; Chanin et al. (2016) in San Diego, CA; Ross et al. (2019, 

2017) in Connecticut and Rhode Island; Criminal Justice Policy Research Institute (2017) in 

Corvallis PD, OR; Milyo (2017) in Columbia, MO; Smith et al. (2017) in San Jose, CA; and 

Wallace et al. (2017) in Maricopa, AZ. 
7 We use all accidents, not just not-at-fault, because West (2018) reports evidence that the 

determination of fault in traffic accidents is itself potentially subject to police discrimination.  
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The U.S. National Highway Traffic Safety Authority’s Fatality Analysis Reporting System 

(FARS) contains race/ethnicity and information on the circumstances surrounding all 

automobile accidents that result in one or more fatalities.8 We estimate models that are similar 

to VOD tests regressing motorist race on whether the fatal accident occurred in 

daylight/darkness conditional on time of day, day of week, and year by location. Consistent 

with minority motorists driving more carefully during daylight because they expect to face 

more scrutiny by police, we find a smaller share of minorities in the accident sample in daylight 

relative to darkness. Fatalities are 1.5 percentage points less likely to involve an African-

American motorist in daylight relative to a share of 13 percent in the overall sample. Further, 

these effects are largest in states with larger racial disparities in police shootings and in those 

that rank highly on a Google trends racism index. The fatal accident sample also exhibits 

balance between daylight and darkness over available motorist and vehicle attributes. 

 In our second empirical analysis, we examine data on police speeding stops in 

Massachusetts and Tennessee. We focus on speeding stops because the motorist’s speed 

provides a convenient variable for assessing infraction severity.9 To our knowledge, these 

samples are the only statewide data available with information on the speed of traffic stops 

resulting in a warning rather than tickets/fines alone.10 We first conduct VOD tests using the 

racial composition of speeding stops. We find that daylight stops are more likely to be of 

African-American motorists than darkness stops in Massachusetts and West Tennessee with 

the largest differences in Massachusetts, but observe no differences in East Tennessee.11  

                                                      
8 We thank Jesse Shapiro for pushing us to identify a sample that would not be selected on 

police stop decisions. See Knox, Lowe and Mummolo (2019) for discussion of concerns about 

relying on administrative data collected in response to police enforcement decisions. 
9 Darkness may also affect traffic stops for non-moving violations, like cell phone use or 

equipment failures (Grogger and Ridgeway 2006; Kalinowski, Ross and Ross 2019a). 

Researchers might use fines to measure severity for a broader set of moving violations. 
10 In Tennessee, the data explicitly identifies warnings and tickets. In Massachusetts, many 

speeding tickets have zero fine, which we interpret as somewhat equivalent to a warning.  
11 Tennessee is divided at the time zone boundary removing counties on the boundary. 
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 We then examine changes in the relative speed of motorists stopped between 

daylight and darkness using an unconditional quantile regression. As noted above, our 

theoretical model implies that the overall effect of discrimination on stopped motorist 

infraction levels is unambiguously negative at higher points in the infraction distribution. We 

find no effect on stopped motorist speeds at the 10th and 20th percentiles for Massachusetts 

and West Tennessee, and only a 1 to 1.5 percentage point shift in the speed distribution for 

East Tennessee. However, the negative shift in the minority motorist speed distribution from 

daylight to darkness increases in magnitude at higher percentiles. Massachusetts has a decrease 

of speed in daylight of 11 to 12 percentage points at the 80th and 90th percentile and East 

Tennessee has a decrease of 3 percentage points at the 70th percentile. In West Tennessee, the 

maximum shift in the speed distribution is less than one percentage point. 

 The much larger shift in Massachusetts appears reasonable given the higher rates of 

minority motorist stops in the Massachusetts data. The next largest shift in speed occurs in 

East Tennessee. Notably, this finding occurs even though the VOD test revealed no evidence 

of racial discrimination in stops for East Tennessee. East Tennessee is consistent with the 

change in motorist behavior in darkness having dominated the change in police stop behavior, 

preventing the VOD test from detecting discrimination. Further, we find no evidence of speed 

distribution shifts for white motorists between daylight and darkness or over available motorist 

and vehicle attributes.  

 Finally, we calibrate a model to the speed distribution of stopped motorists and the 

share of stops made of African-Americans motorists in daylight and darkness.12 Overall, the 

calibrated models do a very good job of matching the empirical moments. Most significantly, 

the calibration for East Tennessee is able to match both the shift in the speed distribution of 

stopped African-American Motorists between daylight and darkness and produce a VOD test 

statistic that is near one in magnitude, which is typically interpreted as evidence of equal 

treatment. In East Tennessee, the daylight stop cost for African-American motorists is 

substantially below the darkness stop costs, and the daylight decrease in stop cost is similar to 

                                                      
12 We calibrate to aggregate moments, more common in macroeconomics, rather than 

estimating the structural model using micro data due to the large computational requirements.  
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the increase in officer pay-off arising from a two standard deviation increase in motorist speed. 

The calibrated racial differences in Massachusetts are very large implying pay-off differences 

similar to a five standard deviation increase in the speed. In West Tennessee, the small shift in 

the speed distribution implies much smaller racial differences in stop costs equivalent to only 

one-half of a standard deviation change in speed. Finally, we simulate the model while forcing 

motorist behavior to remain unchanged in daylight, which implies an increase in the VOD test 

statistic from 1.00 to 1.22 in East Tennessee, a noticeably smaller increase of 1.09 to 1.17 in 

West Tennessee, and a very large increase of 1.38 to 2.74 in Massachusetts.  

 The racial differences in speeding stops against African-Americans by Massachusetts 

and Tennessee police contributes to the literature examining racial differences in the legal 

system including police stops (Grogger and Ridgeway 2006; Ridgeway 2009, Horrace and 

Rohlin 2016, Ritter 2017, and Kalinowski, Ross and Ross 2019b), fines (Goncalves and Mello 

2017, 2018), searches (Knowles, Persico, and Todd 2001; Dharmapala and Ross 2004; Anwar 

and Fang 2006; Antonovics and Knight 2009; Marx 2018), use-of-force (Fryer 2019; Knox, 

Lowe and Mummolo 2019), bail (Ayres and Waldfogel 1994; Arnold, Dobbie and Yang 2018) 

and jury trials (Anwar, Bayer, and Hjalmarsson 2012; Flanagan 2018). Further, our model of 

minority responses to discrimination is relevant to theoretical models of statistical 

discrimination (Lundberg and Startz 1983; Lundberg  1991; Coates and Loury 1993; Moro and 

Norman 2003, 2004), decisions on investment in skills and education (Lang and Manove 2011; 

Arcidiacono, Bayer and Hizmo 2010) and the interpretation of audit/correspondent studies 

(Heckman 1998; 2004, National Research Council 2004 p109-113).  

2. Simple Model of Police-Motorist Interaction 

We develop a model of police traffic stops and consider the effect of discrimination on the 

driving behavior of minority motorists. We impose two key requirements based on important 

aspects of police and motorist behavior: (1) While motorists committing severe infractions, 

e.g. higher speeds, are overall more likely to be stopped, motorists are sometimes stopped (not 

stopped) for more modest (severe) infractions; (2) Some motorists may also choose not to 

commit infractions. Specifically, we specify a model where the cost faced by police to stop a 

motorist depends upon a both race and an additional stochastic component capturing 

circumstance costs. Circumstance costs might include environmental factors, officers’ 
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idiosyncratic preferences, and current officer enforcement activities. As a result, motorists 

always faces a positive probability of a stop even when committing a low-level infraction, but 

are never stopped with certainty even when committing severe infractions. In response, 

heterogeneous motorists select an optimal infraction level by trading off benefits against the 

expected costs of committing an infraction. Some motorists with very low returns from 

infractions choose not to infract. Thus, changes in stop costs have both intensive and 

extensive effects on the distribution of motorist infractions and police stops.  

 This approach differs from models of police search like Knowles, Persico and Todd 

(1999) or Persico and Todd (2008). In those models, motorist uncertainty about being stopped 

for an infraction arises because in equilibrium motorists adjust their decision to carry 

contraband until police are indifferent between searching and not based on the share of 

motorists carrying contraband. As a result, police randomize their search decision.13 Models 

of police search must depend upon the equilibrium likelihood of guilt because guilt is 

unobserved prior to search. In our case, however, the severity of the moving violation is 

observed by police prior to determining whether to stop the motorist, and so the individual’s 

behavior is the most relevant information on which to base the police stop decision.14 

2.1. The Police Officer’s Problem 

The officer’s decision to stop a motorist 𝛾(𝑖, 𝑑, 𝜙) is made after observing a non-negative 

infraction severity 𝑖 (e.g. speed above the limit) that would yield a pay-off from stop of 𝑢(𝑖), 

motorist type/demography 𝑑, and circumstances surrounding the stop 𝜙. The officer’s utility 

maximization problem takes the form 

max
ఊ(௜,௦೏,థ)

[𝑢(𝑖) − ℎ(𝜙) − 𝑠ௗ]𝛾(𝑖, 𝑠ௗ, 𝜙) (1) 

                                                      
13 Dharmapala and Ross (2004) and Bjerk (2007) extend these models so motorists may not 

be observed by police. In our model, being unobserved would raise circumstance specific stop 

costs and prevent stops. 
14 In principle, police may also care about aggregate stop patterns and adjust to changes in 

motorist driving behavior. However, our results on the ambiguity of stop-rate based tests 

would still hold since our model is a special case of this possible generalization.  
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where we define 𝑠ௗ as a fixed component of stop costs associated with a motorist type while 

ℎ(𝜙) represents circumstantial costs.  

We make the following assumptions about police pay-offs and costs 

Assumption 1.1  𝑢 is continuous and twice differentiable over positive values of its argument, 
ௗ௨(௜)

ௗ௜
>

0 and 
ௗమ௨(௜)

ௗ௜మ
> 0 ∀ 𝑖 > 0, 𝑙𝑖𝑚௜→଴శ𝑢(𝑖) = 𝑢଴ > 0, and 𝑢(𝑖) = 0  ∀  𝑖 ≤ 

Assumption 1.2  𝜙 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1); 

Assumption 1.3  ℎ is a continuous, twice differentiable function defined over [0,1), 
ௗ௛(థ)

ௗథ
>

0 ∀ 0 ≤ 𝜙 ≤ 1, 𝑙𝑖𝑚థ→ଵℎ(𝜙) = ∞, and ℎ(0) = 0;  

Assumption 1.4  𝑢଴ − 𝑠ௗ > 0, 𝑢଴ > 0,    𝑠ௗ > 0  ∀  𝑑 

In Assumption 1.1, we assume 𝑢 is discontinuous at zero so that the officer receives 

no pay-off for stopping a non-infracting motorist, but has a pay-off bounded away from zero 

for any positive infraction level. We also assume that 𝑢 has increasing total and marginal pay-

off with respect to infraction severity. These assumptions are consistent with the penalty 

structures in many states. In Assumption 1.2, we assume circumstances are drawn from a 

uniform (0,1) distribution and allow the monotonically increasing function ℎ(𝜙) to capture 

possible non-linearities in the mapping between circumstances and costs. Therefore, 

Assumption 1.3 does not directly impose sign restrictions on the second derivative of ℎ to 

allow for generality over circumstance costs. However, the assumption 𝑙𝑖𝑚థ→ଵℎ(𝜙) = ∞ 

implies that the second derivative of ℎ must be positive as 𝜙 approaches one. Finally, 

Assumption 1.4 requires a positive net pay-off of stop under favorable circumstances, 

sufficiently low 𝜙, even for small positive infraction levels. Therefore, the probability of stop 

is bounded away from zero for any non-zero infraction level creating a situation where 

motorists might choose to not commit infractions (modeling requirement 2 above). 

The solution to the officer’s problem implies an optimal infraction threshold above 

which the officer makes a stop with certainty and below which the officer does not make a 
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stop.15 Given the officer’s net utility of 𝑢(𝑖) − ℎ(𝜙) − 𝑠ௗ ∀ 𝑖, the solution to her utility 

maximization problem is simply 

𝛾(𝑖, 𝑠ௗ , 𝜙) = ൜
1, if 𝑢(𝑖) > ℎ(𝜙) + 𝑠ௗ

0, otherwise.
 

Solving for the infraction level with zero net pay-off implies a threshold severity of 

𝑖∗(𝜙, 𝑠ௗ) = 𝑢ିଵ(ℎ(𝜙) + 𝑠ௗ) (2) 

where 𝑢ିଵ maps from stop costs (𝑢଴, ∞) to stop thresholds within (0, ∞).16  

Conditional on infraction severity and stop costs, we can solve Equation (2) for the 

circumstances 𝜙∗(𝑖, 𝑠ௗ) when net pay-off is zero by exploiting the monotonicity of ℎ(𝜙).  

𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ(𝑢(𝑖) − 𝑠ௗ) (3) 

Based on Assumption 1.3, ℎିଵ maps from stop costs (0, ∞) to stop circumstances (0,1).17 𝜙 

is distributed uniform, and so Equation (3) represents the unconditional (i.e. circumstances 

not observed) probability that an officer stops a motorist with infraction level 𝑖.  

Lemma 1. (i) The infraction level representing the optimal stop-threshold, 𝑖∗(𝜙, 𝑠ௗ) = 𝑢ିଵ(ℎ(𝜙) +

𝑠ௗ), is increasing in officer circumstances and demographic stop cost, and these derivatives are finite for a finite 

𝜙. (ii) The probability of an officer making a stop, 𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ(𝑢(𝑖) − 𝑠ௗ), is decreasing in stop 

cost and increasing in the level of infraction, and these derivatives are finite for finite 𝑖. (iii) The 

𝑙𝑖𝑚
௜→଴

𝜙∗(𝑖, 𝑠ௗ) > 0 for all 𝑠ௗ. 

The results in Lemma 1 arise directly from the assumptions above. Formal proofs for all 

Lemmas and Propositions are provided in Appendix B of the supplemental materials. 

                                                      
15 In principle, 𝛾 could be a probability between zero and one if the net return were zero, but 

since 𝜙 follows a continuous distribution and ℎ is a monotonic, continuous function zero 

return to stop only arises on a set of measure zero. Unlike Knowles, Persico, and Todd (1999) 

and Persico and Todd (2006), circumstantial costs imply that motorists’ adjustment no longer 

yields police indifference between stopping and not stopping motorists. 
16 We also note that ℎ(𝜙) + 𝑠ௗ is always greater than 𝑢଴ for all combinations 𝑖 and 𝜙 

where 𝑢(𝑖) = ℎ(𝜙) + 𝑠ௗ. 

17 We note that based on Assumption 1.4  𝑢(𝑖) − 𝑠ௗ is always greater than zero for positive 𝑖. 
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In this model, discrimination arises if police officers have lower demographic cost of 

stopping a minority (m) relative to the majority (w), 𝑠௠ < 𝑠௪. A standard statistic for evaluating 

racial discrimination in stops is the relative share of stops involving minority motorists, or  

Definition 1. 𝐾௙ ≡
௣[௠|௦௧௢௣௣௘ௗ,௦೘,௙(௜,௠)]

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௙(௜,௪)]
=

∫ ௙(௜,௠)థ∗(௜,௦೘)
ಮ

బ
ௗ௜

∫ ௙(௜,௪)థ∗(௜,௦ೢ)
ಮ

బ
ௗ௜

 

where 𝑓(𝑖, 𝑑) is the distribution of infraction severity by motorist type. Holding majority 

motorist stop costs fixed, discrimination (or an increase in discrimination) can be represented 

as a decrease in minority stop costs. Proposition 1 is consistent with the typical assumption 

that discrimination increases the relative stop rate of minority motorists (𝐾௙).  

Proposition 1. A decrease in the stop costs of minority motorists, 𝑠௠, will increase the relative stop rate of 

minority motorists, 𝐾௙. 

This proposition is established by simply examining the derivative of 𝐾௙ with respect to 𝑠௠. 

2.2. The Motorist’s Problem 

The motorist problem can be characterized as a trade-off between the benefit of committing 

an infraction 𝑏(𝑖, 𝑐), which depends on motorist preferences 𝑐, e.g. recklessness, criminality, 

stress, timing of trip, sleep deprivation, etc. and the expected cost of being stopped, or 

max
௜(௖,௦೏)

𝑏(𝑖, 𝑐) − 𝜏(𝑖)𝜙∗(𝑖, 𝑠ௗ)𝑑𝜙 (4) 

where the cost of being stopped for committing an infraction is 𝜏(𝑖) and the probability of 

being stopped is 𝜙∗(𝑖, 𝑠ௗ).  

We make the following assumptions about motorist’s constraints and preferences 

Assumption 2.1  𝑏 is a continuous, twice differentiable, non-negative function,  
డ௕

డ௜
> 0 and 

డమ௕

డ௜మ
<

0 ∀ 𝑐 and 𝑖 ≥ 0, 𝑏(0, 𝑐) = 0, and 𝑙𝑖𝑚௖→ିஶ𝑏(𝑖, 𝑐) = 0 ∀ 𝑖; 

Assumption 2.2  
డ௕

డ௖
> 0 and 

డమ௕

డ௖డ௜
≥ 0 ∀ 𝑐 and for 𝑖 ≥ 0; 

Assumption 2.3  𝜏 is a continuous, twice differentiable, positive function, 
ௗఛ

ௗ௜
> 0 and 

ௗమఛ

ௗ௜మ
> 0 for 

𝑖 ≥ 0, and 𝜏(0) > 0; 

Assumption 2.4  
డ௕

డ௜
|௜ୀ଴ ≥

ௗఛ

ௗ௜
|௜ୀ଴ℎିଵ(𝑢଴ − 𝑠ௗ) + 𝜏(0)ℎିଵᇲ

(𝑢଴ − 𝑠ௗ) ∀ 𝑐 and 

𝑙𝑖𝑚
௜→ஶ

ௗఛ

ௗ௜
>

ௗ௕

ௗ௜
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Assumption 2.5  
೏మೠ

೏೔మ

೏ೠ

೏೔

≥
ି௛షభᇴ

௛షభᇲ

డ௨

డ௜
 and 

ങഓ

ങ೔

ఛ(௜)
>

ି௛షభᇴ

௛షభᇲ

డ௨

డ௜
=

డమథ∗

డ௜డ௦೏
ቀ−

డథ∗

డ௦೏
ቁ

ିଵ

 for 𝑖 ≥ 0 

Assumptions 2.1-2.4 are relatively standard assumptions. In Assumption 2.1, we 

assume that the motorist benefit or pay-off is an increasing function of infraction severity and 

that marginal benefit is diminishing. In Assumption 2.2, we assume that both the benefit and 

the marginal benefit of infracting rise with 𝑐, which simply initializes the effect direction of 

the preference parameter. In Assumption 2.3, we assume that the motorist’s cost and marginal 

cost are increasing in infraction severity. In the last part of Assumption 2.3, we assume that 

motorist’s cost is bounded away from zero for small infraction levels, consistent with fine 

schedules. This assumption combined with Lemma 1 allows for the existence of inframarginal 

motorists who do not commit an infraction (modeling requirement 2). To assure an interior 

optimal infraction level for motorists who choose to commit an infraction, Assumption 2.4 

requires that the slope of the cost function is less than the slope of the benefit function when 

𝑖 equals zero and greater than the slope of the benefit function at large 𝑖.  

Assumption 2.5 imposes two technical assumptions that the curvature (relative to the 

slope) of the officer’s utility function and the relative slope of the cost function both exceed 

in magnitude the cross partial derivative of 𝜙∗ relative to the first derivative of 𝜙∗ with respect 

to 𝑠ௗ. Effectively, this restriction places a limit on how quickly the negative relationship 

between the probability of a stop and stop costs can fall as infraction severity increases. In 

terms of the primitives, the positive slope of ℎିଵ cannot decrease too quickly, or equivalently 

the positive relationship between circumstances and stop costs cannot increase too quickly in 

percentage terms. The first restriction allows us to sign the second order condition of the 

motorist’s problem assuring a unique, interior optimum infraction level.18 The second 

restriction assures that infraction severity responds to stop costs in the expected manner, i.e. 

increasing when police find it more costly to stop motorists.  

Based on these assumptions, we derive the properties of the optimal motorist 

infraction level. 

                                                      
18 As shown in the proof of Lemma 2, this assumption is only required to establish uniqueness, 

not existence. 
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Lemma 2. (i) There exists a unique optimal infraction level 𝑖ᇱ on 𝑅ା for a motorist of type {𝑐, 𝑑}. (ii) The 

optimal infraction level is increasing in preferences 𝑐, increasing in stop costs 𝑠ௗ, and the first derivatives of this 

infraction level function are finite. 

The curvature restrictions imposed on ℎିଵ by Assumption 2.5 are required to establish 

Lemma 2 because motorists are making decisions based on the expected cost of committing 

an infraction, 𝜏(𝑖)𝜙∗(𝑖, 𝑠ௗ). As 𝑖 becomes large, the curvature of 𝜏(𝑖) dominates as 𝜙∗(𝑖, 𝑠ௗ) 

approaches a constant, but at low infraction levels rapid changes in the relationship between 

stop probability and infraction level as stop costs change can dominate the changes in the 

infraction penalty function 𝜏(𝑖). Without the curvature assumptions, motorists could decrease 

their infraction level as stop costs rise and the likelihood of stop falls, creating the possibility 

of multiple interior, infraction-level optima. 

Next, we define 𝑖∗∗ as the actual infraction level of the motorist. If the pay-off from 

the interior, optimal infraction level is positive then 𝑖∗∗ = 𝑖ᇱ, but if negative then 𝑖∗∗ = 0 and 

if zero motorists are indifferent between infracting and not. Then, motorists with sufficiently 

low values of 𝑐 will choose not to commit an infraction (modeling requirement 2).  

Lemma 3. (i) As long as some motorists chose to commit infractions at finite 𝑐, there exists a threshold 𝑐∗ 

on 𝑅 above which motorists commit a traffic infraction at the optimal level 𝑖ᇱ and below which motorists do not 

commit an infraction or 𝑖ᇱ = 0. (ii) 𝑙𝑖𝑚௖→௖∗శ𝑖∗∗ > 0 where the plus sign indicates the limit from above. 

(iii) If 𝑐∗exists, it is decreasing in 𝑠ௗ. 

The non-convexity in the police pay-off and motorist penalty at 𝑖 = 0 leads to a situation 

where the motorist benefit at the optimal, positive infraction level can be smaller than the 

expected cost of stop. Figure 1 illustrates the optimization problem presenting benefits and 

costs over infraction level for different values of the preference parameter.19 Starting on the 

left with a low value of 𝑐 = −2, the benefit curve lies below the expected cost curve and 

motorists choose not to infract. As 𝑐 increases, the benefit function increases and crosses the 

expected cost function yielding an positive optimal infraction level above a threshold 𝑐∗. 

                                                      
19 Note that the data used to generate this figure and the two figures that follow comes from 

the calibrated simulation of the model for Massachusetts that is described in Section 5.  
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Figure 1: Motorist Benefits and Expected Costs by the Preference Parameter 

 

As above, discrimination arises when police officers have a lower cost of stopping a 

minority 𝑠௠ < 𝑠௪. However, the standard statistic for racial discrimination in police stops can 

now be written utilizing the distribution of motorists over preferences 𝑔(𝑐, 𝑑).  

Definition 2. 𝐾௚ ≡
௣[௠|௦௧௢௣௣௘ௗ,௦೘,௚(௖,௠)]

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௚(௖,௪)]
=

∫ ௚(௖,௠)థ෩ (௖,௦೘)
೎೓

೎∗(ೞ೘)
ௗ௜

∫ ௚(௖,௪)థ෩ (௖,௦ೢ)
೎೓

೎∗(ೞೢ)
ௗ௜

 

where 𝜙෨(𝑐, 𝑠ௗ) ≡ 𝜙∗(𝑖′(𝑐, 𝑠ௗ), 𝑠ௗ). As in Proposition 1, discrimination against minority 

motorists can be interpreted as a decrease in minority motorist stop costs. However, a decrease 

in stop costs now operates through two effects: 1. a change in the probability of stop 𝜙෨ for 

motorist’s who were infracting and 2. an increase in the threshold at which motorists begin to 

commit infraction. 

The purpose of this model is to allow us to examine whether the behavioral 

adjustments of motorists can reverse Proposition 1 that decreases in minority motorist stop 

costs lead to a higher share of minorities among stopped motorists. In fact, both of these 

effects can potentially work against Proposition 1. Unlike the prior case where we considered 

motorist behavior as exogenous, the derivative of 𝜙෨ is ambiguous in sign 

𝑑𝜙෨

𝑑𝑠ௗ
=  

𝜕𝜙∗

𝜕𝑠ௗ
+

𝜕𝜙∗

𝜕𝑖

𝜕𝑖ᇱ

𝜕𝑠ௗ
<> 0 (8) 

A decrease in stop costs directly raises the likelihood of stop, first term of Equation (8), but it 

also reduces the equilibrium infraction level of motorists which in turn reduces stop likelihood, 

the second term. Without a closed form solution for 𝑖ᇱ, we cannot sign the derivative. 

Intuitively, motorists who travel slower in response to a decreased stop costs will likely not 
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travel so much slower that the effect of their behavioral response is larger than the direct effect 

of the change in stop cost.20 This belief is consistent with stops costs and relative stop rates 

moving in opposite directions, as in Proposition 1. Thus, we expect that violations of 

Proposition 1 will be driven primarily by the second effect arising from changes in the share 

of motorists who choose not to infract.  

Proposition 2. Given the general motorist and officer problems defined above, equilibria exist where a 

decrease in 𝑠௠ leads to a decrease in 𝐾௚. 

As with Proposition 1, this proposition is established by examining the derivative of 

𝐾௚ with respect to 𝑠௠. A decrease in stop costs will lead to a direct change in the equilibrium 

stop probability that likely raises the share of minorities stopped, as well as decreasing the 

share of minority motorists who commit infractions and are at risk of being stopped. This 

second negative effect can dominate the direct effect if either the density of inframarginal 

motorists at 𝑐∗ or the change in 𝑐∗ with stop cost is large enough to counteract changes in 

stop probabilities. Any parameters that change the responsiveness of 𝑐∗ to stop costs also 

influence stop probabilities, and so the proof in the appendix creates a counterexample by 

modifying the density of motorists at 𝑐∗. Figure 2 illustrates the response of motorists to 

discrimination using daylight stop costs calculated from the model calibrations presented later 

in the paper. Lower stop costs lead to a large increase in the threshold for committing 

infractions and a modest decline in severity for motorists who commit infractions. 

2.3. Equilibrium Distribution of Infraction Levels 

Finally, we examine the infraction distribution of stopped motorists. We demonstrate that 

discrimination shifts the distribution of stopped motorist infraction severity downwards to 

less severe infractions above a certain percentile threshold. We rely on this property of our  

                                                      
20 This belief will be satisfied if 

డ௨

డ௜

ௗ௜ᇲ

ௗ௦೏
< 1. In other words, the utility from police stops must 

rise sufficiently slowly with infraction level that the effect of stop-cost on infraction does not 

reverse the direct effect on the likelihood of a stop. This condition can be derived from the 

following equation  
ௗథ෩

ௗ௦೏
= −ℎିଵᇲ

(𝑢(𝑖) − 𝑠ௗ) ∗ ቀ1 −
డ௨

డ௜

ௗ௜ᇱ

ௗ௦೏
ቁ.           
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Figure 2: Speeding Violations of Motorists by Preference Parameters and Visibility  

 

model for our empirical analyses of the speed distribution of stopped motorists. For 

convenience, we suppress the minority indicator on the probability distribution 𝑔(𝑐, 𝑚). 

We characterize changes in the observed infraction severity distribution by examining 

the effect of a change in 𝑠௠ on severity level 𝑖௫ of motorists at a specific percentile 𝑥 in the 

speed distribution of stopped motorists. Conditional on 𝑠௠ and motorist preference 𝑐 ≥

𝑐∗(𝑠௠), we write a stopped motorist percentile by integrating over the product of the pdf of 

𝑐 and the equilibrium probability of stop 𝜙෨(𝑐, 𝑠௠) = 𝜙∗(𝑖ᇱ(𝑐, 𝑠௠), 𝑠௠), or  

𝑥(𝑐, 𝑠௠) =
∫ 𝑔

௖

௖∗(௦೘)
(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ

∫ 𝑔
ஶ

௖∗(௦೘)
(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ

 

where the numerator captures the mass of stopped motorists below 𝑐 and the denominator 

captures all stopped motorists. Similarly, we can pick a percentile 𝑥 and write the preference 

parameter of the motorist as an implicit function 𝑐௫ of the percentile.  
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 න 𝑔
௖ೣ(௫,௦೘)

௖∗(௦೘)

(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ = 𝑥 න 𝑔
ஶ

௖∗(௦೘)

(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ (9) 

Finally, we define the equilibrium infraction level of stopped motorists at each 

percentile by substituting 𝑐௫ into 𝑖′. 

Definition 3. 𝑖௫(𝑥, 𝑠௠) ≡ 𝑖′(𝑐௫(𝑥, 𝑠௠), 𝑠௠)     

Next, we impose several assumptions to assure that the motorist problem is well 

behaved as 𝑥 limits to one. If the density of 𝑐 is positive over R, 𝑐 limits to infinity as 𝑥 limits 

to one, 𝑥 < 1 for all finite 𝑐, and infraction level 𝑖 may limit to infinity as 𝑥 limits to one. So, 

we strengthen the second part of Assumption 2.5 on the relative curvature of ℎିଵ.  

Assumption 3.1  𝑙𝑖𝑚
௜→ஶ

ቀ
డఛ

డ௜
ℎିଵᇲ

+ 𝜏(𝑖)ℎିଵᇴ డ௨

డ௜
ቁ = 𝐿 > 0 where 𝐿 is finite and the derivatives 

of ℎିଵ are evaluated at (𝑢(𝑖) − 𝑠௠).  

Assumption 2.5 assures that this expression is positive on 𝑅ା, and Assumption 3.1 extends 

this condition on the curvature of ℎିଵ so that this expression does not limit to zero as 

infraction level increases. Next, we impose assumptions on the police and motorist problems 

as 𝑐 and 𝑖′(𝑐, 𝑠௠) limit to infinity. 

Assumption 3.2  𝑙𝑖𝑚
௜→ஶ

ௗమ௨

ௗ௜మ
= 0,  𝑙𝑖𝑚

௜→ஶ

ௗమఛ

ௗ௜మ
> 0, 𝑙𝑖𝑚

௖→ஶ

డమ௕

డ௜మ
≥ 0, 𝑙𝑖𝑚

௜→ஶ
൫𝜏(𝑖)ℎିଵᇲ

൯ ≠ ∞ where ℎିଵᇲ
 is 

evaluated at (𝑢(𝑖) − 𝑠௠), 𝑙𝑖𝑚
௖→ஶ

డమ௕

డ௖డ௜
≥ 0, and all limits listed in the assumption plus 𝑙𝑖𝑚

௜→ஶ
ℎିଵᇲᇲ

 exist and 

are finite. 21 

The restriction on the second derivative of 𝑢 assures that the limit of the first and second 

derivatives of 𝜙∗ are both zero, consistent with 𝜙∗ asymptotically approaching one or some 

                                                      
21 The existence requirement of assumption 3.2 eliminates situations where the second 

derivative of functions could oscillate in sign. Such oscillation allows the first derivative to 

limit to zero even if the second derivative does not exist. The classic example of this is 𝑓′(𝑥) =

1 +
sin (𝑥ଶ)

𝑥ൗ  where lim
௫→ஶ

𝑓(𝑥) = 1, a horizontal asymptote, but  𝑓ᇱ′(𝑥) = 2𝑐𝑜𝑠(𝑥ଶ) −

sin (𝑥ଶ)
𝑥ଶൗ  and the limit of the second derivative does not exist. 
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upper limit as 𝑖 approaches infinity and assuring that stop is never certain for a finite 𝑖. The 

restrictions on the limits of the second derivatives of 𝜏 and 𝑏 and on the limit of 𝜏(𝑖)ℎିଵᇲ
 are 

required so that the limit of the second order condition is finite and non-zero as 𝑖 increases. 

Note that a finite, non-zero second derivative of 𝜏 implies that the first derivative of 𝜏 limits 

to infinity based on a finite, non-zero rate of change. Therefore, we also restrict the cross-

partial derivative of 𝑏 to be finite so that the first derivative of 𝑏 will also limit to infinity with 

c based on a finite rate of change. So, in cases 𝑖′ limits to infinity with 𝑐, the marginal costs 

and benefits of the first order condition from the motorist’s problem will both move together.  

 Lemma 4. (i) lim
𝒊→ஶ

డథ∗

డ௜
= 0 and lim

𝒊→ஶ

డమథ∗

డ௜మ
= 0, (ii) if lim

௖→ஶ

డమ௕

డ௖డ௜
= 0 then lim

௖→ஶ
𝑖ᇱ(𝑐, 𝑠ௗ) = 𝐼(𝑠ௗ), 

while if lim
௖→ஶ

డమ௕

డ௖డ௜
> 0 then lim

௖→ஶ
𝑖ᇱ(𝑐, 𝑠ௗ) = ∞ , (iii). lim

௖→ஶ
(𝑆𝑂𝐶)௜ୀ௜ᇲ ≠ 0 and finite. 

Finally, we impose a key restriction on the distribution of 𝑐. The intuition behind the 

proposition below is based on fact the that adding population to the bottom of a distribution 

has a much larger effect on the bottom of the distribution than on the top. For example, 

increasing the total population by 11 percent by adding people to the bottom will shift the 

person who was originally at the bottom to the 10th percentile, while only moving someone 

originally at the 90th percentile to about the 91st percentile. The difficulty arises if the density 

over the preference parameter approaches zero as the preference parameter becomes large 

requiring larger and larger changes in 𝑐 to move the percentile as c approaches infinity. Then, 

small percentile changes at the top of the distribution could have large impacts on preferences 

and infraction levels. To rule this out, we first require the distribution be continuous, and then 

place restrictions on how quickly the probability density can limit to zero. 

Assumption 3.3  The domain of the non-zero values of the probability distribution of 𝑐 is continuous, or 

equivalently for any 𝑐 where 𝑔(𝑐) ≠ 0 if there exists 𝑐௛ > 𝑐 where 𝑔(𝑐௛) = 0 then 𝑔(𝑐′) = 0 for all 

𝑐ᇱ > 𝑐௛ and if there exists 𝑐௟ < 𝑐 where 𝑔(𝑐௟) = 0 then 𝑔(𝑐′) = 0 for all 𝑐ᇱ < 𝑐௟. Given this continuity 

assumption, if the domain of 𝑔 is not bounded above, i.e. there exists a 𝑐௟ such that 𝑔(𝑐) ≠ 0 for all 𝑐 >

𝑐௟, then 𝑙𝑖𝑚
௖→ஶ

(1 − 𝐺(𝑐))
𝑔(𝑐)൘ = 0. On the other hand, if the non-zero domain of 𝑔 ends at 𝑐௛, i.e. there 
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exists a 𝑐௛ such that 𝐺(𝑐) ≠ 0 for 𝑐௟ < 𝑐 < 𝑐௛ for some 𝑐௟ ≠ 𝑐௛ and 𝐺(𝑐) = 0 for 𝑐 > 𝑐௛, then 

either 𝑔(𝑐௛) ≠ 0 or 𝑙𝑖𝑚
௖→௖೓

(1 − 𝐺(𝑐))
𝑔(𝑐)൘ = 0. 

One can verify manually that this assumption encompasses several well-known 

probability distributions by applying L’hopital’s rule to the limit in Assumption 3.3 

lim
௖→ஶ

(1 − 𝐺(𝑐))
𝑔(𝑐)൘ = lim

௖→ஶ

−𝑔(𝑐)
𝑔′(𝑐)൘ = 0 

The generalized normal distribution 𝑔(𝑐) = 𝑘(𝛽, 𝜎)𝑒ିఙషభ|௖|ഁ
 satisfies these requirements for 

all 𝛽 > 1 including the normal distribution, but excluding the Laplace distribution where 𝛽 =

1. The assumption is also satisfied for the skew normal distribution 𝑔(𝑐) =

2(2𝜋𝜎)ିଵ𝑒ିఙషభ௖మ
Φ(𝑐) where Φ is the CDF of the normal distribution, and the generalized 

gamma distribution 𝑔(𝑐) = 𝑙(𝛽, 𝜎, 𝛿)𝑐ఋିଵ𝑒ି௕(௖/ఙ)ഁ
 for 𝛽 > 1 including the Weibull 

distribution where 𝛿 = 𝛽 if 𝛽 > 1, but excluding the gamma distribution where 𝛽 = 1. 

Assumption 3.3 tends to hold for probability distributions that include an exponential function 

and have a light tail, but does include distributions with heavier tails than the normal. However, 

the condition fails for distributions that contain an exponential that is linear in 𝑐, such as the 

Laplace or gamma distributions, or for distributions based only on powers of 𝑐, such as the 

pareto or Cauchy distributions. 

Under these assumptions, discrimination will decrease the infraction levels of stopped 

motorists above some percentile 𝑥෤  of the infraction level distribution.  

Proposition 3. For all 𝑠௠ there exists 𝑥෤  such that  
ௗ௜ೣ

ௗ௦೘
> 0 for all 𝑥 > 𝑥෤ . 

 The proof in the appendix proceeds by differentiating 𝑖௫(𝑥, 𝑠௠) in Definition 3  

𝑑𝑖௫

𝑑𝑠௠
=

𝑑𝑖ᇱ

𝑑𝑠௠
+

𝑑𝑖ᇱ

𝑑𝑐

𝑑𝑐௫

𝑑𝑠௠
 

Assumptions 2.5 and 3.1 imply that optimal motorist infraction level increases as stop costs 

rise. However, changes in the distribution of infraction severity are ambiguous because 

additional motorists who had chosen not to infract due to weak preferences may now choose 

to commit an infraction given higher stop costs and 𝑐௫ falls as those additional motorists are 

added to the bottom of the distribution. 
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However, this phenomenon grows weaker as we move further out the speed 

distribution. Additional infracting motorists added at the bottom of the distribution result in 

only a fraction of motorists at a fixed preference level 𝑐 being shifted across any percentile. 

As the percentile 𝑥 approaches one (top of the speed distribution), the first term in the 

derivative of 𝑖௫ (the partial derivative of 𝑖ᇱ) remains bounded away from zero, while the share 

shifted across the percentile, i.e. the derivative of 𝑐௫, approaches zero. 

𝑑𝑐௫

𝑑𝑠௠
=

1

𝜙∗(𝑖ᇱ(𝑐௫ , 𝑠௠), 𝑠௠)𝑔(𝑐௫)
൭(1 − 𝑥)

𝑑𝑐∗

𝑑𝑠ௗ
𝑔(𝑐∗)𝜙∗(𝑖ᇱ(𝑐∗, 𝑠௠), 𝑠௠)

+ −(1 − 𝑥 ) න 𝑔
௖೓

௖∗(௦೘)

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱ + න 𝑔

௖೓

௖ೣ

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱቇ 

The first two terms in parentheses are proportional to (1 − 𝑥) and the last term is shown in 

the proof of the proposition to be bounded by an expression that is proportional to (1 − 𝑥), 

and so the derivative limits to zero. As a result, any significant increase in the speed of stopped 

minority motorists near the top of the speed distribution is suggestive that minority motorists 

may be responding to real or perceived discrimination.  

Note that the effects discussed above are driven primarily by the selection of motorists 

into committing infractions, rather than selection into stop. Figure 3 illustrates this by plotting 

the empirical distribution of minority speeders (solid lines) and minority motorists stopped 

for speeding (dashed lines) with discrimination (daylight) and without (darkness) using the 

model calibration for Massachusetts from below. The speed distribution is substantially slower 

with discrimination whether based on all speeders or stopped motorists only. 

3. Evidence from Accident Data 

In the empirical work below, we exploit the logic of the Veil of Darkness (VOD) examining 

motorist race in daylight and darkness at the same time of day in order to circumvent the 

problem that racial composition of motorists at risk of an accident is unknown. We examine 

a national sample of traffic accidents for evidence of whether minority motorists adjust their 

driving behavior in response to lighting conditions, possibly driving more conservatively and 

safely in daylight when race can be observed. Unlike the data on police stops, accident data 

provides evidence on the driving behavior of minority motorists where the racial composition  
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Figure 3. Speed Distribution of Motorists who Commit Infractions by Visibility  

 

is not directly affected by the composition of police stops. Therefore, we believe that the 

patterns uncovered in the accident data can be attributed to changes in motorist driving 

behavior, presumably in response to actual or perceived discrimination.  

 Our sample is drawn from the National Highway Traffic Safety Authority’s Fatality 

Analysis Reporting System (FARS) data, which documents all automobile accidents in the 

United States involving one or more fatalities. This dataset documents the race and ethnicity 

of fatalities, and we restrict our sample to accidents where the motorist died and were either 

an African-American or a Non-Hispanic white. The overall sample consists of 282,924 

motorist fatalities from a total of 615,826 accidents involving a fatality that occurred in the 

contiguous United States from 2000 to 2017.22  

 Following Grogger and Ridgeway (2006), we further limit our sample to 39,076 

traffic fatalities where the accident occurred within a window of time between the earliest and 

                                                      
22 Observations are weighted by the inverse number of fatalities involved in a given accident. 

For instance, when both drivers from a two-car accident die, we give each of those fatalities a 

weight of one-half. 
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latest sunset of the year, the so-called inter-twilight window (ITW). Changes to the timing of 

sunset occur within this window due to both seasonal variation and the discrete spring/fall 

daylight savings time (DST) shifts. We identify accidents occurring within the ITW based on 

data from the United States Naval Observatory (USNO) denoting the bounds of the ITW 

using the eastern and westernmost coordinates of each county where the accident occurred. 

The lower bound of the county-specific window is the earliest annual easternmost sunset and 

the upper bound is the latest westernmost end to civil twilight. Unlike many VOD studies of 

traffic stops, the FARS data also contains detailed reporting on the lighting conditions when 

an accident occurred. We use this self-reported measure rather than estimates of daylight based 

on USNO data to minimize measurement error in visibility. For a more thorough discussion 

of measurement error in VOD daylight measures, see Kalinowski et al (2019).23 

 Table 1 presents descriptive statistics with column 1 showing the means for the 

entire ITW sample, column 2 for the sample of accidents involving fatalities of African- 

American motorists and column 3 for the sample of white motorist fatalities. The African-

American population is more male, older, drives newer vehicles, more likely to drive imported 

vehicles, and more likely to be involved in accidents that occur on weekends and in darkness. 

 We follow the standard logic of the VOD test by placing race (𝑅௜) on the left-hand 

side of the equation and testing whether accidents occurring in daylight (𝑣௜) are more likely to 

be of African-American motorists using a linear probability model. We condition on day of 

the week (𝑑) and hourly time of the day (𝑡) fixed effects to assure that the effect of daylight is 

identified by comparing stops that were made when the composition of the drivers is expected  

to have been the same. The resulting estimation equation is  

𝑅௜ௗ௧ = 𝛽𝑣௜ௗ௧ + 𝛿ௗ + 𝛾௧ + 𝜀௜ௗ௧ (10) 

where 𝛿ௗ is the vector of day of the week fixed effects and 𝛾௧ contains the time of the day 

fixed effects. We also add state and year or state by year fixed effects. Since many models 

involve high dimensional fixed effects, we estimate linear probability models rather than  

                                                      
23 In Appendix B Table B1, we present comparable results using USNO definitions of daylight 

and darkness and results are robust. As is standard, we disregard stops occurring each day 

during actual twilight when visibility is somewhere between daylight and darkness.  
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Table 1: Descriptive Statistics for the FARS Accident Data 

Total Accidents 615,826 
Fatal Accidents 282,924 
Inter-Twilight 39,076 
Sample All AA White 
Daylight 53.44% 49.93% 53.95% 

M
ot

or
is

t African-American 12.83% 100.00% 0.00% 
Male 67.67% 72.22% 66.99% 
Young 42.74% 38.92% 43.31% 

A
ut

o.
 

Domestic 66.36% 62.25% 66.97% 
Old 22.05% 19.10% 22.48% 

D
ay

 o
f 

W
ee

k 

Sunday 14.03% 15.19% 13.86% 
Monday 13.49% 12.96% 13.57% 
Tuesday 12.91% 11.49% 13.11% 
Wednesday 13.50% 12.90% 13.59% 
Thursday 14.01% 13.52% 14.08% 
Friday 16.52% 16.15% 16.58% 
Saturday 15.54% 17.79% 15.21% 

H
ou

r 
of

 D
ay

 4:00 PM 5.70% 3.23% 6.07% 
5:00 PM 22.97% 21.79% 23.14% 
6:00 PM 24.83% 24.83% 24.83% 
7:00 PM 21.53% 23.83% 21.19% 
8:00 PM 18.06% 19.64% 17.82% 
9:00 PM 4.87% 3.93% 5.01% 

States + DC 49 49 49 
Note: The overall sample includes only traffic stops involving African-American or Non-

Hispanic white motorists. 

logistic regression as used in Grogger and Ridgeway (2006). Kalinowski et al. (2019) 

demonstrate the equivalence of the linear probability and logistic regression tests in Grogger 

and Ridgeway (2006).24 Standard errors are clustered at the state level in columns 1 and 2, but 

at the state by year level when the model includes state by year fixed effects. 

                                                      
24 Starting with Equation (6) in Grogger and Ridgeway (2006), they set the second term to zero 

(in the equation prior to taking the log) based on the assumption that motorist composition 

does not change between daylight and darkness. Then, one can replace the conditional 

probabilities for a representative motorist with the predicted probabilities arising from a linear 

probability model. For positive 𝛽 in Equation (10) above, the test statistic is greater than one 

consistent with discrimination, and the statistic increases with increases in 𝛽.  
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 Panel 1 of Table 2 reports the results from estimating Equation (10) using our 

sample of fatal accidents. Column 1 presents estimates for a model containing the controls in 

Equation (10) plus state and year fixed effects, while column 2 presents estimates for models 

that contain state by year fixed effects. Column 3 presents estimates after adding controls for 

motorist and vehicle attributes including motorist age and gender and vehicle age and whether 

the vehicle was an import. The estimates imply that the likelihood of a fatal accident involving 

an African-American decreases by 1.5 to 1.6 percentage points in daylight, relative to a mean 

of 12.8%. Lower fatality rates of African-Americans in daylight are consistent with African-

American motorist driving more conservatively in daylight when race can be observed. 

 The behavior of minority motorists is also likely to be shaped by their perceptions of 

police behavior. Panels 2 and 3 present estimates based on interacting daylight with one of 

two different measures that might capture African-American perceptions about police 

treatment of minority motorists. The first proxy is the odds that an unarmed individual 

involved in a police shooting in a given state is African-American divided by the fraction of 

state residents who are African-American, where the values range from 0.04 (odds of 1.04) in 

Connecticut to 16.76 in Rhode Island..25 The second proxy is a measure of real and perceived 

racism constructed using Google Trends data in a similar manner as Stephens-Davidowitz 

(2014).26 The index that google trends produces is between 0 and 100, but has been  

                                                      
25 Police shootings data comes from Mesic et al. (2018). However, findings are robust to 

shootings ratios from Fatal Encounters (https://fatalencounters.org/) or Mapping Violence 

(https://mappingpoliceviolence.org/). 
26 Stephens-Davidowitz (2014) uses the frequency of searches for racial slurs to capture the 

sentiment of whites about minorities. In our case, we are interested in the opposite, i.e. the 

sentiment of minorities in terms of real or perceived discrimination, particularly by police. 

Thus, we construct an index using Google Trends from 2004-20 by searching for the following 

words: police shooting, discrimination, racial profiling, prejudice, racism, and police 

complaint. Similar results arise using an index developed by Mesic et al. (2018) based on 

residential segregation, incarceration rates, and disparities in education and employment status. 
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Table 2: Estimated Change in the Accidents Rate for Minority Motorists in Daylight 

LHS: African-American (1) (2) (3) (4) 
Baseline 

Daylight 
-0.01752*** -0.01663*** -0.01566*** -0.01525*** 

(0.00412) (0.00392) (0.00399) (0.00398) 
Observations 39076 39076 39076 39076 

Interaction – Black-White Police Shootings Odds Ratio 

Daylight x Police Shootings 
-0.00193 -0.00356** -0.00415*** -0.00429*** 
(0.00150) (0.00150) (0.00159) (0.00158) 

Observations 39063 39063 39063 39063 
Interaction – Google Search Racism Index 

Daylight x Racism Index 
-0.00886** -0.01169*** -0.01131*** -0.01182*** 
(0.00364) (0.00345) (0.00358) (0.00355) 

Observations 39063 39063 39063 39063 
VOD Inconclusive States 

Daylight 
-0.04642*** -0.03559*** -0.03324*** -0.03381*** 

(0.01217) (0.01085) (0.01080) (0.01071) 
Observations 6587 6587 6587 6587 

C
on

tr
ol

s 

Hour of Day X X X X 
Day of Week X X X X 
Year X X     
State   X     
State x Year     X X 
Motorist/Vehicle       X 

Notes: Coefficient estimates are presented where * represents a p-value .1, ** represents a p-

value .05, and *** represents a p-value .01 level of significance. Standard errors are clustered 

at the state by year level. The sample includes only fatal accidents involving African-American 

or Non-Hispanic white motorists which occurred within the ITW in the contiguous U.S. from 

2000 to 2017 involving at least one or more non-commercial automobiles (no motorcycle or 

pedestrian). Observations are weighted by the inverse number of observations per accident 

included within the sample. Panel 2 adds an interaction between daylight and the odds that an 

unarmed individual involved in a police shooting in a given state is African-American divided 

by the fraction of residents in the state who are African-American. Panel 3 adds an interaction 

between daylight and a statewide, standardized google trends index using the terms: “police 

shooting”, “discrimination”, “racial profiling”, “prejudice”, “racism”, and “police complaint”. 

Panel 4 repeats panel 1 for the subsample of states where the VOD test was conducted and 

results were inconclusive:  Arizona, California, Connecticut, Louisiana, Missouri, North 

Carolina, Ohio, Oregon, and Rhode Island.  
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standardized and so ranges from –2.16 (index of 48.6) in Montana to 2.38 (index of 89) in 

Maryland. Both variables are cross-sectional characterizing states over the period from 2004 

to 2020. The proxy for the perception of discrimination is positively associated with the 

reduction in the share of fatal accidents involving African-Americans in daylight relative to 

darkness. A doubling of the black-white odds of police shooting from even odds to odds of 2 

to 1 implies an increase in racial differences associated with daylight fatalities of 0.4 percentage 

points, while a one standard deviation increase in the racism index implies a 1.2 percentage 

point increase in differences. 

 Next, in Panel 4, we restrict our FARS sample to the 9 states where the VOD test 

has been conducted on police traffic stops and either failed to find or found mixed evidence 

of discrimination.27 We find even larger racial differences in this subsample. Daylight motorist 

fatalities are over 3 percentage points more likely to involve African-American motorists 

relative to a dependent mean of 13.2%, as compared to 1.5 percentage points relative to a 

mean of 12.8 for the entire sample. While these fatality differences do not imply discrimination 

in police stops, the data is suggestive that minority motorists are concerned about such stops, 

potentially affecting previous tests for discrimination.28 

 Lastly, we address the concern that the overall composition of motorists might 

change in response to daylight. Formal tests of balance are wholly absent in existing 

applications of the VOD test because traffic stop data alone cannot be used to disentangle 

changes in enforcement activity from compositional changes in traffic patterns. In our 

accident data, however, we can reasonably expect that police traffic stop behavior did not 

directly affect the composition of motorists and vehicle attributes associated with traffic 

                                                      
27 The states are Arizona, California, Connecticut, Louisiana, Missouri, North Carolina, Ohio, 

Oregon, and Rhode Island. For convenience and to maintain a reasonably sized sample, we 

do not restrict our accident sample to the exact same time periods of VOD traffic stop studies 

in these states. 
28 We cluster standard errors by state by year due to the small number of states. This decision 

is conservative empirically in that clustering at the state level yields smaller standard errors 

than arise with state by year clustering. 
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fatalities, at least for those fatalities involving white motorists. We examine the composition 

of white non-Hispanic motorists involved in fatal accidents in Table 3. Columns 1-4 present 

models where daylight is regressed on whether the vehicle is domestic rather than import, the 

age of the vehicle in years, whether the motorist was male and whether the motorist was under 

the age of 30. Column 5 presents a model that includes all four of the motorist and vehicle 

attributes available. All models included hour of day, day of week and state by year fixed 

effects. The composition of fatal accidents for Non-Hispanic white motorists does not vary 

between daylight and darkness for these variables. No t-statistics are significant, and in the full  

Table 3: Balancing Test of Accidents for White Motorists within the ITW 

LHS: Daylight (1) (2) (3) (4) (5) 

Domestic Vehicle 
0.00428       0.00487 

(0.00510)       (0.00512) 

Vehicle Age 
  -0.00589     -0.00575 
  (0.00547)     (0.00548) 

Male Motorist 
    -0.00629   -0.00668 
    (0.00490)   (0.00491) 

Young Motorist 
      0.00572 0.00571 
      (0.00470) (0.00471) 

C
on

tr
ol

s Hour of Day X X X X X 
Day of Week X X X X X 
State x Year X X X X X 

R^2 0.35243 0.35243 0.35245 0.35244 0.35252 
Observations 34050 34050 34050 34050 34050 

Notes: Coefficient estimates are presented where * represents a p-value .1, ** represents a p-

value .05, and *** represents a p-value .01 level of significance. Standard errors are clustered 

at the state by year level but robust to clustering on just state or year. The sample includes only 

fatal accidents involving Non-Hispanic white motorists which occurred within the ITW in the 

contiguous U.S. from 2000 to 2017 involving at least one or more non-commercial 

automobiles (no motorcycle or pedestrian). Observations are weighted by the inverse number 

of observations per accident included within the sample. Results are robust to restricting the 

sample to not-at-fault accidents as well as weighting the fatal accidents based on the likelihood 

of experiencing a fatality, estimated using detailed vehicular characteristics and restraint use. 

The F-statistic for the main variables of interest in specification five is 1.4 and a p-value of 

77.82 percent.  



27 
 

model the F-statistic associated with the four estimates is 1.37 (p=0.24). Motorist race appears 

to be the only motorist or vehicle characteristic available for which differences in fatality rates 

correlate with daylight.29 

 In this section, we present evidence that minority motorists are involved in accidents 

at a lower rate during periods of daylight relative to equivalent periods of darkness. These 

changes in minority accident rates are larger in states with more police shootings and where 

there is a higher perception of racism. Further, these responses are especially large in states 

where VOD analyses of traffic stops have failed to find evidence of discrimination. This 

evidence is supportive of a view that African-American motorists realize that their race can be 

identified by police in daylight, and so choose to drive more conservatively and carefully during 

daylight hours. We also found that the accidents rates of non-Hispanic white motorists are 

invariant to changes in visibility across several motorist and vehicle characteristics, suggesting 

that this responsiveness to daylight is a phenomenon that is primarily about race. 

4. Evidence from Traffic Stop Data 

In this section, we present the results from an analysis of police traffic stops. Following 

previous studies, we focus on a subsample of stops made for moving violations, in our case 

speeding, since other violations (e.g. headlights, seatbelt, and cellphones) are possibily 

correlated with both visibility and race. Our focus on speeding stops also has the added 

advantage of providing a clear measure of infraction severity that we can use to assess changes 

in motorist driving behavior, i.e. speed relative to the speed limit. We analyze speeding stops 

in Massachusetts from April 2001 to January 2003 made by either the State Police or large 

                                                      
29 Motorists might differ in their selection into the sample of fatalities. We have detailed data 

on all accidents involving a fatality, but only race and ethnicity for the fatalities themselves. 

Therefore, we also estimate inverse probability weighted models based on the likelihood that 

the motorist dies during a fatal traffic accident using vehicle attributes and information on 

restraints, i.e. airbags and seatbelt usage. The results presented above are robust to selection 

on these observables (Appendix Table B2). We do not include controls for airbags and seatbelt 

use in the models above because those controls may be endogenous to motorist risk-taking 

behavior. 
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municipal police departments in Massachusetts and by Tennessee State Police from 2006 to 

2015.30 As noted above, we selected these two states because the stop records contain 

information on the speed traveled for stops in which a warning was issued.31 In Massachusetts, 

we observe stops by local and state police. In order to focus on stop populations containing a 

reasonable number of African-Americans, we restrict our analysis to state police stops and 

stops made by town police departments of the 10 largest towns.32 In Tennessee, we make a 

distinction between patrol districts lying on the Eastern and Western side of the time zone 

border that bisects the state.33 As before, we select only traffic stops that occur within the 

Inter-Twilight window (ITW) which we bound between the earliest recorded Easternmost 

sunset and latest Westernmost end to civil twilight in each county.34  

                                                      
30 Massachusetts data was collected by Bill Dedman for the Boston Globe and used by 

Antonovics and Knight (2009) to study police searches. Tennessee data was obtained from 

the Stanford Open Policing Project. 
31 In Tennessee, warnings are explicitly included in the data. In Massachusetts, there are a large 

number of traffic stops with zero-dollar fines listed which we believe represent warnings.  
32 These towns include Boston, Worcester, Springfield, Lowell, Cambridge, Brockton, New 

Bedford, Quincy, Lynn, and Newton of which Newton is the smallest with a population of 

under 90,000. Restrictions based on omitting towns with African-American shares below the 

state average yields a similar sample of towns and similar results. Smaller towns in 

Massachusetts tend to be more rural and have very few African-American residents. 
33 We exclude three rural patrol districts (of eight total) that lie adjacent to or on top of the 

time zone boundary. A significant portion of those traffic stops occur on opposing sides of 

the time zone from the patrol district’s headquarters creating ambiguity about the time of the 

stop. We find that estimates using the overall sample are less precise, but quantitatively similar 

to our preferred specification which excludes these patrol districts. 
34 The ITW occurred in Massachusetts between 4:09 PM and 9:08 PM while in Tennessee it 

falls within 5:15 PM and 9:48 PM. The Massachusetts traffic stop data only contains the hour 

of the day that the stop was made. So, only traffic stops that occurred during the ITW in an 

hour of complete daylight or darkness were included.  
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Table 4 presents descriptive statistics for the ITW speeding stop samples, excluding 

actual twilight. The Massachusetts sample numbered 10,203 speeding stops, while samples in 

East and West Tennessee, respectively, contain 23,515 and 102,054 stops. In Massachusetts, 

speeding stops were more likely to involve African-American motorists in daylight, for female 

drivers, for imported vehicles, and on Saturdays. In Tennessee, weekend stops were more 

likely to be African-Americans, but stops of males were less likely to be African-Americans in 

east Tennessee and more likely to be African-Americans in west Tennessee. 

Table 4: Descriptive Statistics for Massachusetts and Tennessee Traffic Stop Data 

  MA East TN West TN 
Total Stops 401,408 489,313 1,658,611 
Speeding Stops 80,471 143,014 541,667 
Inter-Twilight 10,203 23,515 102,054 
Sample AA White AA White AA White 

Daylight 71.05% 65.78% 67.59% 68.63% 63.15% 65.03% 

M
ot

or
is

t African-American 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 
Male 69.82% 73.42% 58.54% 62.07% 73.33% 65.21% 
Young 50.62% 52.27% - - - - 

A
ut

o.
 Domestic 28.62% 33.75% 34.12% 36.77% 30.61% 31.85% 

Old 50.62% 49.54% - - - - 
Red 11.88% 10.01% - - -   

D
ay

 o
f 

W
ee

k 

Sunday 13.48% 14.99% 16.04% 12.98% 14.67% 11.85% 
Monday 12.04% 14.24% 12.96% 13.30% 16.04% 14.17% 
Tuesday 15.78% 14.84% 11.50% 13.03% 10.54% 12.69% 
Wednesday 13.43% 13.51% 11.48% 13.54% 11.82% 13.34% 
Thursday 15.84% 13.70% 12.99% 14.10% 11.73% 13.71% 
Friday 12.68% 14.66% 18.92% 19.58% 19.62% 20.50% 
Saturday 16.75% 14.05% 16.11% 13.48% 15.58% 13.73% 

H
ou

r 
of

 D
ay

 5:00 PM 33.87% 37.51% 22.69% 23.97% 24.84% 26.44% 
6:00 PM 38.26% 33.05% 27.29% 28.94% 21.91% 23.61% 
7:00 PM 17.50% 16.02% 22.57% 21.90% 20.81% 20.60% 
8:00 PM 10.38% 13.43% 15.65% 14.53% 19.62% 17.27% 
9:00 PM     11.79% 10.67% 12.83% 12.08% 

Counties/Towns 18 13 44 

Note: The overall sample includes only traffic stops involving African-American or Non-

Hispanic white motorists. MA is used in this and the following tables as an abbreviation for 

Massachusetts and TN is used in the following tables as an abbreviation for Tennessee. 

Table 5 presents the VOD model estimates for all three samples of speeding violations. 

The model follows Equation (10) from the traffic fatality data except that the geographic fixed 
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effects are within state. To control for geography, we use town and state police barracks fixed 

effects because counties are quite large relative to the size of Massachusetts. In Tennessee, 

models include county fixed effects because counties are small in size relative to state police 

patrol districts. Standard errors are clustered at the town/state police barracks level for 

Massachusetts, and at the county by year level for Tennessee.35 Columns 1, 3 and 5 present 

estimates for models that include time of day, day of week, geographic and in Tennessee year 

fixed effects. Columns 2, 4 and 6 present estimates adding the available motorist and vehicle 

controls that include whether the motorist is male or female and whether the vehicle is  

Table 5: Canonical Veil of Darkness Estimates 

LHS: African-American 
(1) (2) (3) (4) (6) (7) 

MA East TN  West TN 

Daylight 
0.0458** 0.0441** -0.00116 -0.000921 0.0105*** 0.00972** 
(0.0185) (0.0193) (0.00397) (0.00395) (0.00384) (0.00382) 

C
on

tr
ol

s 

Day of Week X X X X X X 
Time of Day X X X X X X 
County (or Town) X X X X X X 
Year     X X X X 
Motorist/Vehicle   X   X  X 

Observations 10203 10203 23515 23515 102054 102054 

Notes: Coefficient estimates are presented where * represents a p-value .1, ** represents a p-

value .05, and *** represents a p-value .01 level of significance. Standard errors are clustered 

on county by year in East and West Tennessee (TN) and town or state highway patrol districts 

in Massachusetts (MA) but robust in Tennessee to clustering on county and year separately 

and robust in Massachusetts to clustering by town. The sample includes only traffic stops for 

speeding violations involving African-American or Non-Hispanic white motorists. The 

models using the Tennessee samples also include controls for year in the first two 

specifications of each panel and county by year fixed effects in the last.  

                                                      
35 We could cluster by county for the Tennessee models in columns 3, 4, 6 and 7 where we do 

not include county by year FE’s. However, East Tennessee only contains 13 counties. We have 

confirmed that the standard errors based on clustering at the county level are smaller than 

those clustered at the county by year level. Standard errors in West Tennessee are very similar 

when comparing clustering at the county and at the county by year level. 



31 
 

domestic or import for both states plus whether the driver is under the age of 30, whether the 

vehicle is older than 5 years and whether the vehicle is red for Massachusetts. Estimates for 

east and west Tennessee are very similar including county by year fixed effects. 

In Massachusetts and West Tennessee, we find evidence suggesting that the odds that 

stops involves a minority motorist increases in daylight relative to darkness. A daylight stop in 

Massachusetts is approximately 4.5 percentage points more likely to involve an African-

American motorist, while in west Tennessee daylight stops are 1 percentage point more likely 

to involve African-Americans. The magnitude of these estimates are stable as we add controls 

for motorist and vehicle attributes and as we add county by year fixed effects for Tennessee. 

However, we find no evidence of differences in East Tennessee. The classic interpretation of 

these results is that Massachusetts and West Tennessee show evidence of discriminatory 

policing, but that East Tennessee does not. Appendix Table B3 presents similar estimates 

using the logistic regression as in Grogger and Ridgeway.  

Next, we explore our motivating hypothesis that the speed of stopped minority 

motorists decreases in daylight in response to real or perceived discrimination at higher 

percentiles of the speed distribution. We calculate a relative speed based on both our intuition 

that the same absolute speed limit violation will be more concerning to police when speed 

limits are low and the empirical fact that fine schedules in both states apply more severe 

penalties for the same absolute speed violation at lower speed limits. Specifically, we define 

𝑆௜ௗ௧ as 𝑠𝑝𝑒𝑒𝑑/𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡. We then estimate marginal effects at each decile using 

unconditional quantile regressions following Firpo, Fortin, and Lemieux (2009) and using a 

software package described in Borgen (2016).  

The estimation follows a three-step procedure where we (1) construct a transformed 

speed variable using kernel density estimation, (2) define the re-centered influence function 

(RIF) variable for each quantile in the transformed distribution, and (3) use RIF as the 

outcome in a linear model to obtain the quantile estimates (Firpo, Fortin, and Lemieux 2009). 

We kernel smooth speeds to obtain an estimated density at discrete points in the distribution. 

𝑓௄
෢(𝑆௜) = ෍ 𝐾 ൬

𝑆௜ − 𝑆௝

ℎ
൰

௡

௝ୀଵ
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The bandwidth parameter ℎ is selected following a standard procedure that minimizes the 

mean integrated squared error under a Guassian Kernal if the data is Gaussian.36 The results 

are robust to a variety of alternative functional forms for 𝐾, but is specified as Epanechnikov 

in our estimates. We estimate the relative speed and density at each numeric decile 𝜏 of the 

distribution, and then calculate the Recentered Influence Function (𝑅𝐼𝐹) for each decile in the 

kernel smoothed speeding data within the inter-twilight sample as follows 

𝑅𝐼𝐹൫𝑆௜: 𝑞ఛ , 𝐹௦௣ௗ෢ ൯ = 𝑞ఛ +
𝜏 − 𝕀{𝑆௜ ≤ 𝑞ఛ}

𝑓௦௣ௗ(𝑞ఛ)
 

where 𝑞ఛ and 𝑓௦௣ௗ are the estimated speed and density at decile 𝜏, and 𝕀 is an indicator 

function. Using the decile RIF’s for each 𝑖 observation, we estimate changes in the speeding 

distribution using linear models for the RIF at each decile.  

𝑅𝐼𝐹ఛ,௜ௗ௧ = 𝛽ఛ,଴ + 𝛽ఛ,ଵ𝑅௜ௗ௧ + 𝛽ଶ𝑣௜ௗ௧ + 𝛽ఛ,ଷ(𝑅௜ௗ௧ ∙ 𝑣௜ௗ௧) + 𝛿ఛ,ௗ + 𝛾ఛ,௧ + 𝜀ఛ,௜ௗ௧ (11) 

where the variable 𝑅௜ௗ௧ is a dichotomous indicator variable equal to unity when the motorist 

was of African-American descent and 𝑣௜ௗ௧ is a binary variable indicating the presence of the 

daylight during the traffic stop. The parameter of interest 𝛽ఛ,ଷ is the coefficient on the 

interaction of these two variables, which captures racial heterogeneity in speed distribution 

shift. As above, we add geographic fixed effects, and for the Tennessee samples we also 

include year or county by year fixed-effects.  

 Table 6 presents the results from applying Equation (11) to the same sample of 

speeding stops used for the VOD estimates in Table 5. We find evidence of slower speeds in 

daylight for African-American motorists, but as suggested by our model the speed distribution 

shift in all three sites arises primarily for the higher percentiles. In Massachusetts, the shift is 

quite large starting near zero at the 10th percentile and rising to over 10 percentage points at 

the 80th and 90th percentiles. The next largest speed distribution shift is in East Tennessee 

starting around 1 percentage point at the 10th percentile and reaching a maximum of 3 

percentage points at the 70th percentile. The shift in West Tennessee is smaller starting at zero 

                                                      
36 The precise calculation is ℎ = (9𝑚 10𝑛⁄ )ଵ ହ⁄  where 𝑚 = 𝑚𝑖𝑛 ቀඥ𝑣𝑎𝑟(𝑆), 𝐼𝑄𝑅(𝑆) 1.349⁄ ቁ 

and IQR is the interquartile range. 
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Table 6: Estimated Change in Speed Distribution for Stopped Minority Motorists in Daylight 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 

Daylight 
0.00519 0.114 1.847 0.628 -0.415 -0.120 0.449 -0.749 -1.372 
(1.092) (1.140) (1.221) (0.904) (1.130) (1.247) (1.351) (2.177) (2.819) 

African-American 
0.664 0.548 2.551** 2.187*** 1.551** 1.728* 1.477 5.959*** 6.514** 

(1.029) (0.993) (1.202) (0.720) (0.685) (0.850) (1.672) (1.816) (2.946) 
Daylight*African-
American 

-0.273 -0.213 -1.718 -2.228** -5.032** -6.839** -7.783*** -10.99*** -12.24** 
(1.298) (1.286) (1.376) (1.004) (1.946) (2.585) (2.682) (2.803) (4.239) 

Obs. 10203 10203 10203 10203 10203 10203 10203 10203 10203 

East 
TN 

Daylight 
-0.200 0.00734 -0.186 -0.123 -0.0979 -0.0470 0.181 0.210 -0.113 
(1.094) (0.806) (0.471) (0.351) (0.336) (0.411) (0.565) (0.835) (1.116) 

African-American 
-2.116** -1.861* -1.254* -0.909 -0.795 -1.039 -0.178 -1.029 -1.732 
(0.763) (0.903) (0.688) (0.804) (0.824) (1.063) (1.402) (1.827) (2.132) 

Daylight*African-
American 

-1.158 -1.384** -1.070** -0.965** -1.419*** -1.560** -3.069** -2.232 -2.117 
(0.842) (0.629) (0.465) (0.365) (0.440) (0.589) (1.084) (1.542) (2.248) 

Obs. 23515 23515 23515 23515 23515 23515 23515 23515 23515 

West 
TN 

Daylight 
0.0879 0.174 -0.0740 -0.137 -0.205* -0.0470 0.00219 -0.168 -0.176 
(0.120) (0.212) (0.109) (0.140) (0.110) (0.183) (0.250) (0.341) (0.472) 

African-American 
0.182 0.606** 0.676** 0.671* 0.296 0.664 0.671 0.546 0.170 

(0.249) (0.272) (0.259) (0.378) (0.344) (0.428) (0.514) (0.607) (0.723) 

Daylight*African-
American 

-0.102 -0.176 -0.545*** -0.867*** -0.536*** -0.843*** -0.996*** -0.802 -0.948 
(0.151) (0.202) (0.172) (0.258) (0.188) (0.243) (0.328) (0.511) (0.668) 

Obs. 102054 102054 102054 102054 102054 102054 102054 102054 102054 

Notes: Coefficient estimates are presented such that * represents a p-value .1, ** represents a p-value .05, and *** represents a p-value .01 
level of significance. Standard errors are clustered on county by year in East and West Tennessee (TN) and patrol districts in Massachusetts 
(MA). The sample includes only traffic stops for speeding violations involving African-American or Non-Hispanic white motorists. Controls 
include time of day, day of week, and geographic location fixed-effects. The two Tennessee samples also include controls for year. Relative 
speed is calculated as speed relative to the speed limit and multiplied by one hundred. 
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and reaching a maximum below 1 percentage point at the higher percentiles. Notably, the 

coefficients on daylight are always insignificant consistent with no shift in the speed 

distribution of non-Hispanic white motorists. 

The quantile regressions yield multiple estimates and raise concerns about multiple 

hypothesis testing. We follow Bifulco et al. (2008) and conduct a simulation exercise for each 

site to assess the likelihood that the pattern of results arose by chance. Bifulco et al. (2008) 

exploit the logic of a Fisher’s exact permutation test in a resampling framework 1) ordering 

the t-statistics arising from the coefficients for each quantile by magnitude, 2) drawing 10,000 

bootstrap samples of the same size as the original sample with replacement under the null of 

no correlation between speed and daylight (randomizing daylight), 3) re-estimating the quantile 

model for and ordering the t-statistics from each bootstrap sample,  and 4) calculating the 

fraction of bootstrap samples where the set of ordered t-statistics dominate the actual set of 

t-statistics. While the t-tests above are two-sided, this permutation test is one-sided where a 

vector of signed and ordered bootstrap t-statistics lies below the actual signed and ordered t-

statistics if all the elements of the bootstrap vector have a lower value than the corresponding 

elements of the actual vector. We strongly reject the null hypothesis of no negative shift for 

all three sites. In Massachusetts, the likelihood of this pattern arising by chance is 0.013 

percent. In East and West Tennessee, the likelihoods are 0.005 and 0.001, respectively. We 

also re-estimate these models adding the motorist and vehicle controls, and in Tennessee 

adding county by year fixed effects (Appendix Table B4). The addition of motorist and vehicle 

controls has no impact. The county by year fixed effects erode the speed shift in East 

Tennessee somewhat with upper percentile point estimates between 15 and 20 percent smaller, 

but the pattern remains significant with a 0.04 likelihood of a type 1 error.  

 Next, as we did for the fatality analysis, we examine the speed distribution for non-

Hispanic White motorists over other factors. In both Massachusetts and Tennessee, we 

observe whether the motorist is male and whether the vehicle is either a domestic or imported 

vehicle. We re-estimate the models in Table 6 replacing race in Equation (11) with either 

motorist male or whether domestic vehicle. Repeating our bootstrap analysis, we find that the 

likelihood that these results could have arisen by chance was 0.89 for Massachusetts, 0.59 for 

East Tennessee and 0.37 for West Tennessee for gender; and 85.7 percent for Massachusetts, 
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72.3 percent for East Tennessee, and 91.1 percent for West Tennessee for vehicle type, see 

Appendix Table B5.37 For Massachusetts, we also conduct these analyses for whether the 

driver is younger than 30, the vehicle is older than 5 years and whether the vehicle is red. As 

above, we find no evidence of a change in speeds with daylight, see Appendix Table B6.  

 In this section, we present evidence on the speed distribution of stopped motorists. 

African-American motorists in the upper half of the speed distribution travel more slowly in 

daylight, when presumably race is observed. The largest differences in the speed distribution 

arise in the Massachusetts sample where we also observed the largest composition differences 

between daylight and darkness stops. In Tennessee, we observed that the largest shift in the 

speed distribution of stopped African-American motorists arose in East Tennessee where the 

VOD tests did not identify any evidence of discrimination, consistent with behavioral changes 

potentially confounding the VOD test. Further, we find no evidence of speed distribution 

shifts for whites or shifts over other motorist or vehicle attributes. 

5. Calibration and Simulation 

In this section, we calibrate our model to the data on stopped motorists from Massachusetts 

and East and West Tennessee to calculate racial differences in police stop costs in daylight and 

darkness. We also use the darkness police stop costs to calculate counterfactual VOD test 

statistics that would have arisen if African-American motorists did not respond to increased 

scrutiny by police in daylight by driving more slowly. We note that we choose to conduct a 

macro-style calibration using the aggregate moments, rather than a structural estimation using 

micro data. This decision is based on computational demands given that each calibration takes 

several weeks to run.38 Due to the use of calibration rather than structural estimation, we rely 

on the quantile regressions above for inference.  

                                                      
37 We follow the same permutation strategy except that the test is two-sided using the absolute 

value of the t-statistics because we have no priors concerning how these attributes might shift 

the speed distribution. For Tennessee, we repeat the analyses including county by year fixed 

effects, and the negative findings are robust. 
38 Beyond the increase in computation time required for just using micro data, we also 

approximate the relationship between infraction level and the preference parameter. This 
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 We assume that motorist preferences 𝑐 follow a skew-normal distribution with 

skewness 𝑎, location 𝑒 and scale 𝑤 and separate parameters for whites and African-Americans 

𝑓(𝑡) =  2(𝑡)(𝑎𝑡) 

where  and  are the normal PDF an CDF respectively, and 𝑡 = (𝑥 − 𝑒) 𝑤⁄  

Next, we parameterize the probability of being stopped 𝜙∗(𝑖, 𝑠ௗ) as a function of 

speed/infraction severity and police stop costs. We begin by specifying the police return from 

a stop as a monotonic function of motorist speed. Specifically, 

𝑢(𝑖) = 𝑖ఎ + 𝑢଴   for 𝑖 > 1 and  𝑢(0, 𝑠ௗ) = 0 

where 𝜂 > 1 allows the return to stop to increase non-linearly with infraction severity and 

𝑢଴ > max൫𝑠జ,ௗ൯ for all {𝜐, 𝑑} assures that 𝑢(𝑖) > 0 for all positive infraction levels.  

Next, we need specify ℎିଵ as a monotonic mapping from a priori net pay-off to stop 

probability 𝜙∗ between zero and one. Specifically,  

𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ(𝑢(𝑖) − 𝑠ௗ)  where  ℎିଵ(𝜔) = ቊ
ఠೌ

ఠೌା௄
     𝜔 > 0      

    0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑎 > 0,  𝐾 > 0 

The function limits to one as 𝜔 → ∞ . If 𝑎 < 1, the function has a negative second derivative 

for ℎ > 0. Otherwise, the second derivative can change sign with 𝑖 but is negative as ℎ → ∞.  

To specify the motorist problem, we assume a stop penalty of 

𝜏(𝑖) = 𝑖ఓ + 𝜏଴   𝑓𝑜𝑟  𝑖 > 0 

where  𝜇 > 1  and 𝜏଴ > 0 so costs are bounded away from zero and are convex in infraction 

level. The benefit function from committing the infraction depends on both 𝑖 and 𝑐 

𝑏(𝑖, 𝑐) = 𝑏଴𝑖ఈభ𝑒ఈమ௖ 

where  𝑏଴ > 0 , 0 < 𝛼ଵ < 1 so that marginal returns are diminishing with infraction level, 

and the direction of the preference parameter is initialized by 𝛼ଶ > 0. The motorist solves  

                                                      
approximation represents most of the computational requirements for each optimization step. 

With aggregate moments, a relatively fine grid of 10,000 points provides reasonable accuracy, 

but micro data estimation implies the comparison of individual motorist speed levels to 

predicted speed levels at their percentile in the distribution requiring a much finer grid. 
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max
௜ᇲ(௖,௦೏)

𝑏(𝑖, 𝑐) −  𝜏(𝑖) 𝜙∗(𝑖, 𝑠ௗ) 

to find the optimal speed 𝑖ᇱ(𝑐, 𝑠ௗ).  

While a closed-form solution does not exist for 𝑖ᇱ(𝑐, 𝑠ௗ), we exploit the monotonicity 

of 𝑖ᇱ(𝑐, 𝑠ௗ) to define 𝑐ᇱ(𝑖, 𝑠ௗ) = 𝑖ᇱିଵ(𝑖, 𝑠ௗ), and derive a closed-form solution for  

𝑐ᇱ(𝑖, 𝑠ௗ) =
1

𝛼ଶ
𝑙𝑛 ൬𝜇𝜙∗(𝑖, 𝑠ௗ)𝑖ఓିఈభ +

𝜕𝜙∗

𝜕𝑖

(𝑖ఓ + 𝜏଴)

𝑖ఈభିଵ
൰ −

ln (𝛼ଵ𝑏଴)

𝛼ଶ
 

We calculate 𝑐ᇱ(𝑖, 𝑠ௗ) over a fine grid of values of 𝑖 and create a piece-wise approximation of 

𝑖ᇱ(𝑐, 𝑠ௗ) by linearly interpolating between the two nearest points in the grid. 

 For a given set of parameters, we can calculate the motorist’s optimal speed for each 

𝑐, and then solve for the value 𝑐∗(𝑠ௗ) where net benefits at the optimal speed are equal to 

zero. With 𝜙∗(𝑖, 𝑠ௗ), 𝑖ᇱ(𝑐, 𝑠ௗ) and 𝑐∗(𝑠ௗ), we can solve for the equilibrium speed distribution 

and the speed distribution of stopped motorists by drawing a large sample of motorists from 

the distribution of 𝑐 and using the probability of stop as a weight. Assuming a common police 

stop cost 𝑠జ in darkness and separate daylight police stop costs for white and minority 

motorists, 𝑠జ,௪ > 𝑠జ and 𝑠జ,௠ < 𝑠జ; we can use the same sample over 𝑐 to simulate white and 

minority speed distributions in daylight and in darkness. Finally, we vary the share of minority 

motorists in the population by applying a weight to the minority distribution to calibrate the 

share of stops in daylight and darkness that involve minority motorists.  

To calibrate the model, we calculate six speed percentiles (20th, 40th, 60th, 80th, 90th, and 

95th) in miles per hour over the speed limit for each combination of daylight/darkness and 

minority/non-minority, the fraction of motorists stopped during daylight who are minority, 

and the fraction of motorists stopped in darkness who are minority. Beyond the quintiles, we 

add moments for the 90th and 95th percentiles to help capture the skewed nature of the speed 

distribution. Further, to better fit the model, we calibrate using 12 moments associated with 

the speed distribution of white and minority motorists in daylight, 12 moments associated with 

the difference between the daylight and darkness speed at each percentile in the white and 

minority speed distributions. Similarly, we calibrate to one moment for the percentage 

(fraction times 100) of motorists stopped during the darkness who are minority and one 

moment for the VOD test statistic in Definition 3 again times 100. To assure that the speed 
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moments are comparable to the estimations above, we remove the time of day, day of week 

and geographic fixed effects in our relative speed model and add the sample means back to 

the residuals yielding motorists with effectively common observables. Finally, we convert these 

relative speeds back to miles per hour using the mode speed limit in each sample. Given that 

the number of speed moments is arbitrary, we place a weight of 0.070 on the share minority 

stops and VOD test statistic moments and a smaller weight of approximately 0.036 on each 

speed distribution moments.  

The functional forms above contain ten parameters shared by both white and minority 

simulated motorists. The Mean, variance, and skewness of our preference distribution, and 

daylight stop costs, must be determined separately for white and minority motorists. We 

initialize the darkness stop cost 𝑠జ to 44 allowing both the daylight stop cost of both groups 

and the minimum return to a stop 𝑢଴ to vary relative to this fixed value. Finally, we must 

calibrate the fraction of minority motorists for the simulated population. Therefore, in total 

18 free parameters are calibrated for each site. We minimize a mean squared error (MSE) 

optimization function of the weighted moments. Because the surface of this function is highly 

non-linear, we first use a derivative-free Simplex-based optimization algorithm, Subplex 

(Rowan, 1990), to identify a series of local minima. We use these minima to set broad bounds 

on parameters and the best local minima as a starting value for a modified evolutionary-based 

optimization routine, ESCH (da Silva Santos et al., 2010), to identify a global minimum. Once 

we have identified the global minimum, we use a third optimization routine based on quadratic 

approximations to the surface, BOBYQA (Powell 2009), to precisely locate that minimum and 

verify that the gradient is approximately zero. The step by step process is detailed in Appendix 

B, and the specific limits for each parameter are shown in Appendix Table C1.  

Table 7 presents the results of the calibration with the first two columns presenting 

the empirical and the simulated moments for Massachusetts and the next four columns 

presenting the same results for East and West Tennessee (majority motorist moments are 

shown in Appendix Table C2). At the bottom, the table also presents the fraction not   

infracting for minority and the majority motorists in daylight and in darkness. The model does 

a very good job of matching both the daylight speed distribution and the change in the speed 

distribution between daylight and darkness. The model also closely matches both the fraction
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Table 7: Calibration Results 

  
Massachusetts  East Tennessee West Tennessee 

Data Simulation Data Simulation Data Simulation 
African-American Speed Distribution Daylight 

20th Percentile 13.3835 13.3344 12.1763 12.8364 11.5419 11.1629 
40th Percentile 14.8568 15.5537 15.2878 14.9840 13.5632 13.4064 
60th Percentile 18.3094 18.5776 17.8090 17.5080 15.7624 15.8768 
80th Percentile 23.9418 23.6617 20.7542 21.5682 19.3593 19.5268 
90th Percentile 28.4176 28.5276 25.3446 25.0375 22.8966 23.1396 
95th Percentile 33.3009 33.1861 28.6582 28.4432 26.8071 26.5863 

Difference Daylight and Darkness  
20th Percentile -0.0899 0.2458 0.5273 -0.2437 0.0830 0.3135 
40th Percentile 2.2735 2.3309 0.3049 0.3068 0.2845 0.4916 
60th Percentile 3.8130 3.5311 0.7094 0.6952 0.4227 0.5726 
80th Percentile 4.7673 4.6565 1.6052 0.9309 0.4644 0.6492 
90th Percentile 5.6541 5.1206 1.2012 1.3029 0.7023 0.6702 
95th Percentile 5.1922 5.3577 1.3253 1.4398 1.0512 0.7007 

Minority Share of Stops 
Minority Share of Stops Darkness 0.1664 0.1665 0.0466 0.0466 0.1771 0.1771 
VOD Test Statistic 1.3769 1.3793 0.9924 0.9973 1.0908 1.0899 

 Percent Minority  
Motorists NA 0.1638 NA 0.0552 NA 0.1771 
Not Infracting in Daylight NA 0.4959 NA 0.3197 NA 0.0773 
Not Infracting in Darkness NA 0.0056 NA 0.1673 NA 0.0063 
Notes: Empirical speed distribution in miles per hour based on regressing relative speed on day of week, time of day, geographic and for 
Tennessee year controls, calculating the residual, adding the means of controls back and then calculating miles per hour based on the 
mode speed limit of traffic stops for each site. The simulated moments arise from the global optimum identified by applying an 
evolutionary based optimization routine called ESCH and precisely located by applying second optimization routine based on quadratic 
approximations to the surface BOBYQA. The calibrated parameters used to calculate these moments are shown in Appendix Table B2. 
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of stops in darkness that involve minority motorists and the VOD test statistic. The results 

for East Tennessee are notable in that the model fits both the empirical VOD test statistic that 

is just below one, and the speed distribution with stopped minority motorists at upper speed 

percentiles driving substantially slower in daylight. The calibrated parameters are shown in 

Appendix Table C3. 

Table 8 summarizes impact of race on police stop behavior in the calibration. The first 

row presents the minority stop cost in daylight, which is 0.006 in Massachusetts, 30.113 in 

East Tennessee, and 37.753 in West Tennessee all in comparison to a darkness stop cost of  

Table 8: Calibration Results Related to Racial Differences in Police Stop Behavior 

  Massachusetts East Tennessee West Tennessee 
Police Return and Cost of Stops 

Minority Stop Cost Diff 43.994 13.887 6.247 

Return to Increase in Speed       

0.5 SD Increase     6.405 

2.0 SD Increase   13.002  

5.0 SD Increase 42.940     

VOD Test Statistics 
Simulated VOD Test 1.379 0.997 1.090 

Adjusted VOD Test 2.736 1.223 1.173 

Notes The minority stop cost difference is calculated by subtracting the calibrated stop cost 

for minorities in daylight from the darkness stop cost of 44. The return to a specific number 

𝜶 of standard deviations 𝝈 increase in miles per hour over the speed limit is calculated relative 

to the mean speeding violation 𝝁 by (𝝁 + 𝜶𝝈)𝜼 − (𝝁𝒊)
𝜼 using the calibrated parameters and 

the simulated speed distribution for each site. Finally, the simulated VOD test statistics is the 

statistic implied by the simulated speed distributions based on the calibrated parameters, and 

the adjusted VOD test statistic is calculated using the darkness minority speed distribution for 

daylight stops, but having police stop motorists based on their daylight stop costs. 

44.0. White stop costs in daylight are all near the darkness stop cost, consistent with the 

quantile regression estimates that showed no change in the speed distribution in daylight for 

white motorists. Consistent with previous studies and the large shift in the speed distribution, 

we find evidence of high levels of police prejudice in Massachusetts, i.e. a daylight stop cost 
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far below the darkness stop cost. We observe higher levels of prejudice (lower stop costs) for 

East Tennessee than West Tennessee, based on the shift in the speed distribution in East 

Tennessee, even though the VOD test statistic for East Tennessee was near 1.0.  

Further, we can use the calibrated parameters for police stop costs and 𝑢(𝑖) to 

compare the lower minority stop costs in daylight to the police pay-offs that arise from 

stopping a motorist whose speeding infraction is more severe. The next three rows show the 

change in return to a police stop if the speed of the motorist increases by ½, 2 or 5 standard 

deviations relative to the simulated mean level of infractions among stopped motorists. 

Specifically, we find the mean 𝜇 and standard deviation 𝜎 of the number of miles per hour 

over the speed limit within the simulation for motorists committing infractions, and calculate 

(𝜇 + 𝛼𝜎)ఎ − (𝜇)ఎ where 𝛼 takes on the values of ½, 2 and 5 and 𝜂 is the exponent parameter  

in 𝑢(𝑖). Daylight raises the effective net returns to stopping minority motorists in 

Massachusetts by more than the effect of raising speed by five standard deviations above the 

mean. In East Tennessee, daylight raises the return to stopping minority motorists by an 

amount comparable to a 2 standard deviation increase in speed, but in West Tennessee where 

the speed distribution shift is smaller daylight raises the return by ½ a standard deviation.  

The second panel of Table 8 presents the VOD test statistic from the calibration and 

a counterfactual VOD statistic that would arise if minority motorists did not change their 

infraction behavior in daylight, i.e. behaved in daylight as if they faced the police costs for 

stops in darkness. Following Grogger and Ridgeway (2006), the VOD test statistic is 

Definition 4. 𝐾௏ை஽ ≡
௣[௠|௦௧௢௣௣௘ௗ,జ]

௣[௪|௦௧௢௣௣௘ௗ,జ]

௣ൣ௪|௦௧௢௣௣௘ௗ,జ൧

௣ൣ௠|௦௧௢௣௣௘ௗ,జ൧
 

We can calculate the alternative statistic 𝐾஺஽௃ by calculating the above probabilities in 𝐾௏ை஽ 

except 𝑐∗ and 𝑖ᇱ in daylight 𝜐 are assumed to depend on the darkness 𝜐 police stop cost. 

Definition 5. 𝐾஺஽௃ ≡
∫ ௚(௖,௠)థ∗ቀ௜ᇲቀ௖,௦ഔቁ,௦ഔ,೘ቁ

೎೓
೎∗(ೞഔ)

ௗ௜

∫ ௚(௖,௪)థ∗ቀ௜ᇲቀ௖,௦ഔቁ,௦ഔ,ೢቁ
೎೓

೎∗(ೞഔ)
ௗ௜

∫ ௚(௖,௪)థ∗ቀ௜ᇲቀ௖,௦ഔቁ,௦ഔቁ
೎೓

೎∗(ೞഔ)
ௗ௜

∫ ௚(௖,௠)థ∗ቀ௜ᇲቀ௖,௦ഔቁ,௦ഔቁ
೎೓

೎∗(ೞഔ)
ௗ௜

 

The counterfactual VOD test statistic increases the most in Massachusetts from 1.38 to 2.74, 

the next most in East Tennessee from 1.00 to 1.22, and has the smallest increase in West 

Tennessee to 1.17 from the calibrated value of 1.09. The results in Table 8 are repeated for 

alternative weights in Appendix Table C4, see Table C5 for calibration parameters. 
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6. Conclusion 

The VOD test uses seasonal variation to compare the racial composition of police stops in 

daylight and darkness at the same time of day and has quickly become a gold standard for 

evaluating administrative data on police stops. This paper observes that, even if the 

composition of motorists is the same between daylight and darkness, the behavior of motorists 

may change when they face discrimination. If race is only observable in daylight, minority 

motorists might rationally choose to drive more conservatively and commit fewer infractions 

or less severe infractions in daylight, if they anticipate being stopped for infractions at higher 

rates when race can be observed. Our model implies that the standard test statistics for racial 

discrimination in police stops may not increase with discrimination, and that motorists at the 

top of the speed distribution of stopped minority motorists will drive slower in daylight  

We document empirical evidence of behavioral changes using both national data on 

traffic fatalities and data on traffic stops from the states of Massachusetts and Tennessee. 

Using the national accident fatality data, we find that the likelihood of a motorist fatality being 

an African-American as opposed to white motorist decreases by about 1.5 percentage points 

in daylight. In the traffic stop data, we find a large shift in the speed distribution of African-

Americans between daylight and darkness near the top of the distribution for Massachusetts, 

7 to 12 percent slower in daylight relative to the speed limit. We find a smaller, but sizable, 

shift for East Tennessee, 1.5 to 3 percent slower, but very little shift in West Tennessee, one 

percent slower or less. We do not observe similar changes in fatalities or speeding over any 

observable motorist or vehicle characteristics, nor do we observe such changes in speeding 

for white motorists. 

 We calibrate our theoretical model of police stop and motorist infraction behavior. 

The model matches the empirical moments well including capturing the fact that the observed 

decreases in the infraction level of African-Americans in daylight is largest at the highest 

percentiles of the speed distribution. The calibrated differences in police stop costs for 

minority motorists between daylight and darkness is very large in Massachusetts, equivalent to 

the return to police of increasing the motorist speed above the speed limit by 5 standard 
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deviations relative to the mean. These larger differences are consistent with both the high 

VOD test statistic and the large speed distribution shift. On the other hand, the VOD test 

statistic in East Tennessee is near one and yet we observe substantially lower calibrated police 

stop costs for minority motorists in daylight, equivalent to an increase in motorist speed of 2 

standard deviations. The failure of the VOD test statistic to detect discrimination in East 

Tennessee appears attributable to the substantial shift in the minority speed distribution 

between daylight and darkness.  

 In summary, the VOD test remains one of the best techniques available for providing 

convincing evidence of discrimination in police stops. However, this paper has documented 

substantial empirical evidence that minorities likely adjust their behavior in daylight to reflect 

actual or perceived police discrimination in stops. Our model calibrations suggest that the bias 

in the VOD test arising from changes in minority motorist behavior can be large, and in East 

Tennessee this bias appears to have completely eliminated any observable evidence of 

discrimination. Researchers should consider such behavioral responses to discrimination when 

testing for discrimination in police stops. Going forward, states and localities that collect data 

on traffic stops should also attempt to collect objective information on the severity of the 

infraction where possible including the disposition of the stop, e.g. citation vs. warning.  
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Appendix 

A. Theoretical Appendix 

A.1. The Police Officer’s Problem 

Officer’s choice 𝛾(𝑖, 𝑑, 𝜙) observing non-negative infraction severity 𝑖, motorist 

type/demography 𝑑, and circumstances surrounding the stop 𝜙.  

max
ఊ(௜,௦೏,థ)

[𝑢(𝑖) − ℎ(𝜙) − 𝑠ௗ]𝛾(𝑖, 𝑠ௗ, 𝜙) (1) 

where 𝑠ௗ as a fixed component of stop costs and ℎ(𝜙) represents circumstantial costs.  

Assumption 1.1  𝑢 is continuous and twice differentiable over positive values of its 

argument, 
ௗ௨(௜)

ௗ௜
> 0 and 

ௗమ௨(௜)

ௗ௜మ
> 0 ∀ 𝑖 > 0, lim௜→଴శ𝑢(𝑖) = 𝑢଴ > 0, and 𝑢(𝑖) =

0  ∀  𝑖 ≤ 0; 

Assumption 1.2  𝜙 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1); 

Assumption 1.3  ℎ is a continuous, twice differentiable function defined over [0,1), 

ௗ௛(థ)

ௗథ
> 0 ∀ 0 ≤ 𝜙 ≤ 1, 𝑙𝑖𝑚థ→ଵℎ(𝜙) = ∞, and ℎ(0) = 0;  

Assumption 1.4  𝑢଴ − 𝑠ௗ > 0, 𝑢଴ > 0,    𝑠ௗ > 0  ∀  𝑑 

The solution to the officer’s problem is 

𝛾(𝑖, 𝑠ௗ , 𝜙) = ൜
1, if 𝑢(𝑖) > ℎ(𝜙) + 𝑠ௗ

0, otherwise.
 

Officer will stop all motorists at any infraction level above some threshold severity level  

𝑖∗(𝜙, 𝑠ௗ) = 𝑢ିଵ(ℎ(𝜙) + 𝑠ௗ) (2) 

Solve Equation (2) for the circumstances 𝜙∗(𝑖, 𝑠ௗ) where the net pay-off of a stop is 

zero as 

𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ(𝑢(𝑖) − 𝑠ௗ) (3) 

Equation (3) represents the probability that an officer stops a motorist with infraction level 𝑖.  

Lemma 1. (i) The infraction level representing the optimal stop-threshold, 𝑖∗(𝜙, 𝑠ௗ) = 𝑢ିଵ(ℎ(𝜙) +

𝑠ௗ), is increasing in officer circumstances and demographic stop cost, and these derivatives are finite for a finite 

𝜙. (ii) The probability of an officer making a stop, 𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ(𝑢(𝑖) − 𝑠ௗ), is decreasing in stop 

cost and increasing in the level of infraction, and these derivatives are finite for finite 𝑖. (iii) The 

𝑙𝑖𝑚
௜→଴

𝜙∗(𝑖, 𝑠ௗ) > 0 for all 𝑠ௗ. 
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Proof of Lemma 1. (i) Assumption 1.1 and the Implicit Function Theorem imply that the derivative 

𝑢ିଵᇱ(⋅) > 0 and finite over its domain (𝑢଴, ∞). Then by Assumption 1.3 and inspection it is clear the 

derivative of Equation (2) implies  
డ௜∗

డథ
= 𝑢ିଵᇱ ௗ௛

ௗథ
> 0, and  

డ௜∗

డ௦೏
= 𝑢ିଵᇱ > 0.  

(ii) Assumption 1.3 and the Implicit Function Theorem imply that the derivative ℎିଵᇱ(⋅) > 0 and 

finite over its domain, and by Assumption 1.1 and inspection it is clear the derivative of Equation (3) implies 

డథ∗

డ௦೏
= −ℎିଵᇲ

< 0, and 
డథ∗

డ௜
= ℎିଵᇲ ௗ௨

ௗ௜
> 0.  

(iii) Based on Equation (3) and the continuity of ℎ, we can rewrite lim
௜→଴

𝜙∗(𝑖, 𝑠ௗ) as 

lim
௜→଴

ℎିଵ[𝑢(𝑖) − 𝑠ௗ] = ℎିଵ ቂlim
௜→଴

𝑢(𝑖) − 𝑠ௗቃ = ℎିଵ(𝑢଴ − 𝑠ௗ) > 0, which is greater than zero 

based on Assumption 1.4 and the definition of ℎ (Assumption 1.3). QED 

 Standard statistic for evaluating racial discrimination in stops is the relative share of 

stops involving minority motorists, or  

Definition 1. 𝐾௙ ≡
௣[௠|௦௧௢௣௣௘ௗ,௦೘,௙(௜,௠)]

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௙(௜,௪)]
=

∫ ௙(௜,௠)థ∗(௜,௦೘)
ಮ

బ
ௗ௜

∫ ௙(௜,௪)థ∗(௜,௦ೢ)
ಮ

బ
ௗ௜

 

where 𝑓(𝑖, 𝑑) is the joint distribution of infraction severity and motorist type.  

Proposition 1. A decrease in the stop costs of minority motorists, 𝑠௠, will increase the relative stop rate of 

minority motorists, 𝐾௙. 

Proof of Proposition 1. The theorem is established by taking the derivative of 𝐾௙ with respect to 𝑠௠. 

 
ௗ௄೑

ௗ௦೘
=  

ଵ

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௙(௜,௪)]
∫ 𝑓(𝑖, 𝑚)

డథ∗

డ௦೘

ஶ

଴
𝑑𝑖 < 0 

The derivative is negative based on part ii of Lemma 1. QED 

A.2. The Motorist’s Problem 

The motorist problem is 

𝑚𝑎𝑥
௜ᇲ(௖,௦೏)

𝑏(𝑖, 𝑐) − 𝜏(𝑖)𝜙∗(𝑖, 𝑠ௗ) (4) 

Where benefit of committing an infraction 𝑏(𝑖, 𝑐) depends on motorist preferences 𝑐 and cost 

of being stopped for committing an infraction 𝜏(𝑖) times the probability of being stopped 𝜙∗.  

Assumption 2.1  𝑏 is a continuous, twice differentiable, non-negative function,  
డ௕

డ௜
> 0 

and 
డమ௕

డ௜మ
< 0 ∀ 𝑐 and 𝑖 ≥ 0, 𝑏(0, 𝑐) = 0, and lim௖→ିஶ𝑏(𝑖, 𝑐) = 0 ∀ 𝑖; 
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Assumption 2.2  
డ௕

డ௖
> 0 and 

డమ௕

డ௖డ௜
≥ 0 ∀ 𝑐 and for 𝑖 ≥ 0; 

Assumption 2.3  𝜏 is a continuous, twice differentiable, positive function, 
ௗఛ

ௗ௜
> 0 and 

ௗమఛ

ௗ௜మ
> 0 for 𝑖 ≥ 0, and 𝜏(0) > 0; 

Assumption 2.4  
డ௕

డ௜
|௜ୀ଴ ≥

ௗఛ

ௗ௜
|௜ୀ଴ℎିଵ(𝑢଴ − 𝑠ௗ) + 𝜏(0)ℎିଵᇲ

(𝑢଴ − 𝑠ௗ) ∀ 𝑐 and 

lim
௜→ஶ

ௗఛ

ௗ௜
>

ௗ௕

ௗ௜
 

Assumption 2.5  
೏మೠ

೏೔మ

೏ೠ

೏೔

≥
ି௛షభᇴ

௛షభᇲ

డ௨

డ௜
 and 

ങഓ

ങ೔

ఛ(௜)
>

ି௛షభᇴ

௛షభᇲ

డ௨

డ௜
=

డమథ∗

డ௜డ௦೏
ቀ−

డథ∗

డ௦೏
ቁ

ିଵ

 for 𝑖 ≥ 0 

Lemma 2. (i) There exists a unique optimal infraction level 𝑖ᇱ on 𝑅ା for a motorist of type {𝑐, 𝑑}. (ii) The 

optimal infraction level is increasing in preferences 𝑐, increasing in stop costs 𝑠ௗ, and the first derivatives of this 

infraction level function are finite. 

Proof of Lemma 2. (i) The motorist can chooses an infraction level that satisfies the following first-order 

condition  

𝐹𝑂𝐶 ≡
𝜕𝑏(𝑖, 𝑐)

𝜕𝑖
−

𝑑𝜏(𝑖)

𝑑𝑖
𝜙∗(𝑖, 𝑠ௗ) − 𝜏(𝑖)

𝜕𝜙∗(𝑖, 𝑠ௗ)

𝜕𝑖
= 0 (6) 

By Assumption 2.1, the first term in Equation (6) is positive on 𝑅ା, and by Assumption 2.3 and 

Lemma 1 the second and third terms are negative when including the subtraction signs. The first part of 

Assumption 2.4 implies that the right-hand side of Equation (6) is positive at 𝑖 = 0. Turning back to the 

officer’s problem, we know that lim
௜→ஶ

𝑢(𝑖) = ∞ due to 𝑢(𝑖) having a positive slope and a non-negative second 

derivative (Assumption 1.1), and by Assumption 1.3 lim
ఠ→ஶ

ℎିଵ(𝜔) = 1. Therefore, based on Equation 

(3), lim
௜→ஶ

𝜙∗(𝑖, 𝑠ௗ) = 1, and so by the second part of Assumption 2.4 the negative second term becomes 

larger in magnitude than the first term as 𝑖 limits to infinity. These results imply that the FOC is negative for 

some positive values of 𝑖. Therefore, by continuity of all functions over 𝑅ା, a positive FOC value at zero and 

negative FOC value as infinity is approached, solutions 𝑖′ to Equation (6) must exist on 𝑅ାand an odd 

number of those solutions must maximize the objective function in Equation (5).  

In order to assure a unique solution over 𝑅ା, we examine the second-order condition of the motorist’s 

problem  
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𝑆𝑂𝐶 ≡
𝜕ଶ𝑏(𝑖, 𝑐)

𝜕𝑖ଶ
−

𝑑ଶ𝜏(𝑖)

𝑑𝑖ଶ
𝜙∗(𝑖, 𝑠ௗ) − 2

𝑑𝜏(𝑖)

𝑑𝑖

𝜕𝜙∗(𝑖, 𝑠ௗ)

𝜕𝑖
− 𝜏(𝑖)

𝜕ଶ𝜙∗(𝑖, 𝑠ௗ)

𝜕𝑖ଶ

> 0 

(7) 

The first term in Equation (7) is negative based on Assumption 2.1, the second and third terms 

(again including the minus signs) are negative based on Assumption 2.3 and Lemma 1. If the final term is 

negative, the SOC is unambiguously negative. In order to show why the final term is negative, we draw on the 

solution of the officer’s problem and the monotonicity of ℎିଵ(𝑥). Recall that 𝜙∗(𝑖, 𝑠ௗ) = ℎିଵ[𝑢(𝑖) −

𝑠ௗ]; we use this expression to expand the second derivative of 𝜙∗ from Equation (3) 

𝜕ଶ𝜙∗(𝑖, 𝑠௩,ௗ)

𝜕𝑖ଶ
= ቆ

𝑑𝑢(𝑖)

𝑑𝑖
ቇ

ଶ

ℎିଵᇴ
(𝑢(𝑖) − 𝑠ௗ) +

𝑑ଶ𝑢(𝑖)

𝑑𝑖ଶ
ℎିଵᇲ

(𝑢(𝑖) − 𝑠ௗ) ≥ 0. 

The first term is ambiguous and the second term is positive. If the first term is negative, the second 

term is at least as large in magnitude as the first term based on Assumption 2.5. Therefore, the last term in 

Equation (7) is negative, and there exists a unique positive value of 𝑖ᇱ that maximizes motorist payoff over 

𝑅ା. Finally, by the continuity of all functions, this solution varies continuously with 𝑐 and 𝑠ௗ. The continuity 

of 𝑖ᇱ assures the derivatives are finite. 

(ii) Next, we turn to signing the derivatives of 𝑖ᇱ. By total differentiation of the first order condition 

in Equation (6), we show that the optimal infraction level 𝑖ᇱ is increasing in criminality. Specifically, 

𝑑𝑖′

𝑑𝑐
= −

1

𝑆𝑂𝐶

𝜕(𝐹𝑂𝐶)

𝜕𝑐
= −

𝜕ଶ𝑏
𝜕𝑐𝜕𝑖
𝑆𝑂𝐶

> 0 ∀ 𝑐 𝑎𝑛𝑑 𝑠ௗ > 0, 

where the sign of the numerator is positive based on Assumption 2.2 and the 𝑆𝑂𝐶 is the expression for the 

second-order condition in Equation (7) and is negative when motorists are maximizing their net benefits from 

infracting on 𝑅ା.  

A similar exercise signs the derivative with respect to stop costs 𝑠ௗ where the derivative of the FOC 

or the numerator is 

𝑑𝑖′

𝑑𝑠ௗ
= −

1

𝑆𝑂𝐶

𝜕(𝐹𝑂𝐶)

𝜕𝑠ௗ
=

1

𝑆𝑂𝐶
ቆ

𝜕𝜏

𝜕𝑖

𝜕𝜙∗

𝜕𝑠ௗ
+ 𝜏(𝑖)

𝜕ଶ𝜙∗

𝜕𝑖𝜕𝑠ௗ
ቇ > 0 

The first term in parentheses is negative by Assumption 2.3 and Lemma 1, but the second term is 

ambiguous in sign. Rearranging the expression in the second part of Assumption 2.5 demonstrates that the 
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first term is larger in magnitude than the second term. The negative sign of the SOC implies that the total 

derivative is positive. QED 

Next, we define 𝑖∗∗ as the actual infraction level. If the pay-off from the interior, 

optimal infraction level is positive then 𝑖∗∗ = 𝑖ᇱ, but if negative then 𝑖∗∗ = 0.  

Lemma 3. (i) As long as some motorists chose to commit infractions at finite 𝑐, there exists a threshold 𝑐∗ 

on 𝑅 above which motorists commit a traffic infraction at the optimal level 𝑖ᇱ and below which motorists do not 

commit an infraction or 𝑖ᇱ = 0. (ii) 𝑙𝑖𝑚௖→௖∗శ𝑖∗∗ > 0 where the plus sign indicates the limit from above. 

(iii) If 𝑐∗exists, it is decreasing in 𝑠ௗ. 

Proof of Lemma 3. (i) The last part of Assumption 2.1, the last part of Assumption 2.3 and part (iii) of 

Lemma 1 implies that lim
௖→ିஶ

(𝑏(𝑖′, 𝑐) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ)) < 0 since benefits limit to zero regardless of the 

optimal infraction level 𝑖′ and stop costs and stop probability are bounded above zero for any positive 𝑖. If some 

motorists infract, then there exist values of 𝑐 for which (𝑏(𝑖′, 𝑐) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ)) > 0, and by the 

continuity of 𝑖′ over 𝑐 this establishes the existence of a 𝑐∗ where (𝑏(𝑖′, 𝑐∗) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ)) = 0.  

We can differentiate the motorist net benefits expression (NB) from Equation (5) at any 𝑐. We then 

cancel out derivative terms involving 𝑖ᇱ since the FOC is zero at the optimal infraction level (envelope theorem), 

and show that 

𝑑𝑁𝐵

𝑑𝑐
=

𝜕

𝜕𝑐
(𝑏(𝑖′, 𝑐) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ)) =

𝜕𝑏(𝑖′, 𝑐)

𝜕𝑐
> 0 

Therefore, with NB of zero at 𝑐∗, NB must be negative for 𝑐 < 𝑐∗ and positive for 𝑐 > 𝑐∗ 

(ii) In the proof of Lemma 2, we show that the optimal infraction level 𝑖ᇱ is positive for all 𝑐 and that 

the function 𝑖ᇱ is continuous and monotonically increasing in 𝑐. Therefore, if  𝑐∗ exists for a given equilibrium 

based on part (i) above, 𝑖ᇱ is positive for 𝑐 equal to 𝑐∗, and the continuity of 𝑖ᇱimplies that the optimal 

infraction level at 𝑐 must approach that positive value as 𝑐 approaches  𝑐∗ from above or equivalently 

𝑙𝑖𝑚௖→௖∗శ𝑖∗∗ > 0. 

(iii) We calculate the total derivative of the equation that defines 𝑐∗, 𝑁𝐵 = 0,  with respect to 𝑠ௗ 

and 𝑐∗. We again exploit the envelop theorem cancelling out terms that involve the derivative of 𝑖′ at the optimal 

infraction level. 

൬
𝑑

𝑑𝑐
(𝑏(𝑖′, 𝑐) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ))𝑑𝑐∗ +

𝑑

𝑑𝑠ௗ

(𝑏(𝑖′, 𝑐) − 𝜏(𝑖′)𝜙∗(𝑖′, 𝑠ௗ))𝑑𝑠ௗ൰
௖ୀ௖∗

= 0 
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Accordingly,  

൬
𝜕𝑏

𝜕𝑐
𝑑𝑐∗ − 𝜏(𝑖′)

𝜕𝜙∗

𝜕𝑠ௗ
𝑑𝑠ௗ൰

௖ୀ௖∗

= 0  𝑜𝑟  
𝑑𝑐∗

𝑑𝑠ௗ
= 𝜏(𝑖′) ൬

𝜕𝜙∗

𝜕𝑠ௗ
൰ ൬

𝜕𝑏

𝜕𝑐
൰

௖ୀ௖∗

ିଵ

< 0 

where the terms in parentheses are evaluated at 𝑐∗ and 𝑖ᇱ(𝑐∗, 𝑠ௗ). Finally, 𝑐∗ falls with 𝑠ௗ based on Lemma 

1 part (ii) and Assumption 2.2. QED 

The share of stop motorist who are minority can be rewritten as 

Definition 2. 𝐾௚ ≡
௣[௠|௦௧௢௣௣௘ௗ,௦೘,௚(௖,௠)]

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௚(௖,௪)]
=

∫ ௚(௖,௠)థ෩ (௖,௦೘)
೎೓

೎∗(ೞ೘)
ௗ௜

∫ ௚(௖,௪)థ෩ (௖,௦ೢ)
೎೓

೎∗(ೞೢ)
ௗ௜

 

where 𝜙෨(𝑐, 𝑠ௗ) ≡ 𝜙∗(𝑖′(𝑐, 𝑠ௗ), 𝑠ௗ) and g(c,d) is the distribution of motorists. 

Unlike the 𝜙∗, the derivative of 𝜙෨ is ambiguous in sign 

𝑑𝜙෨

𝑑𝑠ௗ
=  

𝜕𝜙∗

𝜕𝑠ௗ
+

𝜕𝜙∗

𝜕𝑖

𝜕𝑖ᇱ

𝜕𝑠ௗ
<> 0 (8) 

Proposition 2. Given the general motorist and officer problems defined above, equilibria exist where a 

decrease in 𝑠௠ leads to a decrease in 𝐾௚. 

Proof of Proposition 2. As in Proposition 1, we examine the impact of decreasing 𝑠௠. 

 
ௗ௄೒

ௗ௦೘
=

ଵ

௣[௪|௦௧௢௣௣௘ௗ,௦ೢ,௚(௖,௪)]
൬− ቀ

ௗ௖∗

ௗ௦೘
ቁ

௖ୀ௖∗
𝑔(𝑐∗, 𝑚)𝜙෨(𝑐∗, 𝑠௠) +

∫ 𝑔(𝑐, 𝑚)
ௗథ෩

ௗ௦೘

ஶ

௖∗ 𝑑𝑐൰  

A positive derivative is consistent with the existence of equilibria that satisfy Proposition 2. 

The first term in paratheses is positive by Lemma 3 part (i) as stop costs rise new motorists with lower 

values of 𝑐 begin to commit infractions raising minority motorists’ share in the population of stops. The second 

term is generally ambiguous. The proposition will hold if equilibria exist when the inequality below is satisfied. 

− ൬
𝑑𝑐∗

𝑑𝑠௠
൰

௖ୀ௖∗

𝑔(𝑐∗, 𝑚)𝜙෨(𝑐∗, 𝑠௠) > − න 𝑔(𝑐, 𝑚)
𝑑𝜙෨

𝑑𝑠௠

ஶ

௖∗

𝑑𝑐 

The rest of the proof will proceed by constructing an example of an equilibrium by selecting primitives 

where the inequality above holds. We can bound the integral on the right hand side of the inequality from above 

by first exploiting the fact that the partial derivative of 𝜙∗ with respect to 𝑠௠ must be less than the total 

derivative of 𝜙෨ with respect to 𝑠௠ because the second term in Equation (8) is always positive.  
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− න 𝑔(𝑐, 𝑚)
𝜕𝜙∗

𝜕𝑠௠

ஶ

௖∗

𝑑𝑖 > − න 𝑔(𝑐, 𝑚)
𝑑𝜙෨

𝑑𝑠௠

ஶ

௖∗

𝑑𝑖 

Second, select ℎ so that the second derivative of ℎିଵ is always negative. Now, we can bound the 

resulting expression from above because the negative second derivative of ℎିଵ implies that the derivative of 𝜙∗ 

with respect to 𝑠௠ is always increasing in 𝑐. Specifically, Equation (3) replacing 𝑖 with 𝑖′(𝑐, 𝑠ௗ) yields.  

𝜕ଶ𝜙∗

𝜕𝑐𝜕𝑠ௗ
= −ℎିଵᇱᇱ

𝑑𝑢

𝑑𝑖

𝜕𝑖′

𝜕𝑐
> 0 

or equivalently that the negative derivative of 𝜙∗ with respect to 𝑠ௗ is falling in magnitude with 𝑐. Therefore, 

the partial derivative of 𝜙∗ takes its maximum value within the intergral at 𝑐∗, and so this derivative can be 

replaced by a constant equal to its value at 𝑖ᇱ(𝑐∗, 𝑠௠) and then factored out of the integral. 

− ൬
𝜕𝜙∗

𝜕𝑠௠
൰

௜ୀ௜ᇲ(௖∗,௦೘)

൫1 − 𝐺(𝑐∗, 𝑚)൯ ≥ − න 𝑔(𝑐, 𝑚)
𝜕𝜙∗

𝜕𝑠௠

ஶ

௖∗

𝑑𝑖 

where 𝐺(𝑐∗, 𝑚) is the cumulative distribution function of 𝑔(𝑐, 𝑚) at 𝑐∗. 

Using this inequality, we replace the right-hand side of the inequality required for Proposition 2 to 

hold yielding a sufficient condition for a positive derivative of 𝐾௚.  

− ൬
𝑑𝑐∗

𝑑𝑠௠
൰

௖ୀ௖∗

𝑔(𝑐∗, 𝑚)𝜙෨(𝑐∗, 𝑠௠) > − ൬
𝜕𝜙∗

𝜕𝑠௠
൰

௜ୀ௜ᇲ(௖∗,௦೘)

൫1 − 𝐺(𝑐∗, 𝑚)൯ 

Next, we replace the derivative of 𝑐∗ using the equation from the proof of Lemma 3 part (iii)  

𝑑𝑐∗

𝑑𝑠ௗ
= 𝜏(𝑖′) ൬

𝜕𝜙∗

𝜕𝑠ௗ
൰ ൬

𝜕𝑏

𝜕𝑐
൰

௖ୀ௖∗

ିଵ

 

then the proposition holds if 

𝑔(𝑐∗, 𝑚)𝜙෨(𝑐∗, 𝑠௠) >
1

𝜏(𝑖ᇱ)

𝜕𝑏

𝜕𝑐
൫1 − 𝐺(𝑐∗, 𝑚)൯ 

where the negative of the derivatives of 𝜙∗ with respect to 𝑠௠ on both sides of the inequality were evaluated at 

𝑖′(𝑐∗, 𝑠௠) and so cancel out of the expression, and 𝜏 and the derivative of 𝑏 are evaluated at 𝑖′(𝑐∗, 𝑠௠) and 

𝑐∗. 

Now, let 𝑔(𝑐, 𝑚) be a symmetric, unimodal probability distribution centered on 𝑐∗ with a maximum 

density of 𝑔̅ at 𝑐∗ and rewrite the inequality based on this distribution. 

𝑔̅ 𝜙෨(𝑐∗, 𝑠௠) >
1

𝜏(𝑖ᇱ)

𝜕𝑏

𝜕𝑐

1

2
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The solutions for 𝑐∗, 𝑖ᇱ(𝑐∗, 𝑠௠), 𝜙෨(𝑐∗, 𝑠௠) and the derivative of 𝑏 do not depend upon the 

probability distribution, and 𝜙෨(𝑐∗, 𝑠௠) is bounded away from zero. By construction, 𝑔̅ must limit to infinity 

as the variance of the distribution of 𝑐 limits to zero. Therefore, by continually reducing the variance of the 

distribution, we can obtain a density 𝑔̅ that is sufficiently large to satisfy the inequality above. QED 

A.3. Equilibrium Distribution of Infraction Levels 

We write a stopped motorist percentile by integrating over the product of the pdf of 

𝑐 and the equilibrium probability of stop 𝜙෨(𝑐, 𝑠௠) = 𝜙∗(𝑖ᇱ(𝑐, 𝑠௠), 𝑠௠), or  

𝑥(𝑐, 𝑠௠) =
∫ 𝑔

௖

௖∗(௦೘)
(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ

∫ 𝑔
ஶ

௖∗(௦೘)
(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ

 

We next write the preference parameter as an implicit function 𝑐௫ of the percentile.  

 න 𝑔
௖ೣ(௫,௦೘)

௖∗(௦೘)

(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ = 𝑥 න 𝑔
ஶ

௖∗(௦೘)

(𝑐ᇱ)𝜙∗(𝑖ᇱ(𝑐ᇱ, 𝑠௠), 𝑠௠) 𝑑𝑐ᇱ (9) 

Finally, we define the equilibrium infraction level of stopped motorists at each 

percentile. 

Definition 3. 𝑖௫(𝑥, 𝑠௠) ≡ 𝑖′(𝑐௫(𝑥, 𝑠௠), 𝑠௠)     

Assumption 3.1  lim
௜→ஶ

ቀ
డఛ

డ௜
ℎିଵᇲ

+ 𝜏(𝑖)ℎିଵᇴ డ௨

డ௜
ቁ = 𝐿 > 0 where 𝐿 is finite and the 

derivatives of ℎିଵ are evaluated at (𝑢(𝑖) − 𝑠௠).  

Assumption 3.2  lim
௜→ஶ

ௗమ௨

ௗ௜మ
= 0,  lim

௜→ஶ

ௗమఛ

ௗ௜మ
> 0, lim

௖→ஶ

డమ௕

డ௜మ
≥ 0, lim

௜→ஶ
൫𝜏(𝑖)ℎିଵᇲ

൯ ≠ ∞ where ℎିଵᇲ
 

is evaluated at (𝑢(𝑖) − 𝑠௠), lim
௖→ஶ

డమ௕

డ௖డ௜
≥ 0, and all limits listed in the assumption plus lim

௜→ஶ
ℎିଵᇲᇲ

 

exist and are finite. 1 

                                                      
1 The existence requirement of assumption 3.2 eliminates situations where the second derivative of functions 
could oscillate between positive and negative. Such oscillation creates the possibility that the first derivative can 
limit to zero even though the second derivative does not exist. The classic example of this type of problem is 

𝑓′(𝑥) = 1 + sin (𝑥ଶ)
𝑥ൗ  where lim

௫→ஶ
𝑓(𝑥) = 1, a horizontal asymptote, but  𝑓ᇱ′(𝑥) = 2𝑐𝑜𝑠(𝑥ଶ) − sin (𝑥ଶ)

𝑥ଶൗ  

and so the limit of the second derivative does not exist. 
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Lemma 4. (i) lim
𝒊→ஶ

డథ∗

డ௜
= 0 and lim

𝒊→ஶ

డమథ∗

డ௜మ
= 0, (ii) if lim

௖→ஶ

డమ௕

డ௖డ௜
= 0 then lim

௖→ஶ
𝑖ᇱ(𝑐, 𝑠ௗ) = 𝐼(𝑠ௗ), 

while if lim
௖→ஶ

డమ௕

డ௖డ௜
> 0 then lim

௖→ஶ
𝑖ᇱ(𝑐, 𝑠ௗ) = ∞ , (iii). lim

௖→ஶ
(𝑆𝑂𝐶)௜ୀ௜ᇲ ≠ 0 and finite. 

Proof of Lemma 4. (i) Since the second derivative of 𝑢 limits to zero, the first derivative of 𝑢 must approach 

a horizontal asymptote and so be finite. Using Equation (3), 

lim
𝒊→ஶ

𝜕𝜙∗

𝜕𝑖
= lim

𝒊→ஶ
ℎିଵᇲ 𝑑𝑢

𝑑𝑖
= 0 

The first term of the product limits to zero based on the definition of ℎ in Assumption 1.3 and the first 

derivative of 𝑢 is finite as noted above and so the limit of the derivative equals zero. Next, we can write 

lim
𝒊→ஶ

𝜕ଶ𝜙∗

𝜕𝑖ଶ
= lim

𝒊→ஶ
ቆℎିଵᇲᇲ

൬
𝑑𝑢

𝑑𝑖
൰

ଶ

+ ℎିଵᇲ 𝑑ଶ𝑢

𝑑𝑖ଶ
ቇ = 0 

The second term limits to zero based on the definition of ℎ and Assumption 3.2. Turning to the first term, the 

fact that ℎିଵᇲ
 limits to zero requires that ℎିଵᇲᇲ

 also limit to zero under the assumption that its limit exists. 

Specifically, if ℎିଵᇲᇲ
limits to a negative value, there exists an 𝑖 large enough that ℎିଵᇲᇲ

 will always be within 

𝜀 of that limiting value. Then, for any finite, positive value of ℎିଵᇲ
at this 𝑖, we can divide this positive value 

by the lower bound of the magnitude of ℎିଵᇲᇲ
 (its current value at 𝑖 plus 𝜀) and increasing 𝑖 by this amount 

leads to a negative value of ℎିଵᇲ
 and a contradiction. Therefore, ℎିଵᇲᇲ

 must limit to zero, and since the limit 

of the derivative of 𝑢 is finite the first term of the expression above also limits to zero. 

 (ii) If the cross-partial derivative of 𝑏 limits to zero with 𝑐, then the limit of the first derivative of 𝑏 

in the first order condition must limit to a constant with 𝑐 holding 𝑖 fixed. Further, because the second derivative 

of b with respect to 𝑖 is negative, this limit must be larger than the limit that arises when the limit of the 

derivative is evaluated for 𝑖′(𝑐) so that 𝑖 increases as 𝑐 increases, and so the limit of the first derivative of 𝑏 

evaluated at 𝑖′(𝑐) is also finite   

lim
௖→ஶ

𝜕𝑏

𝜕𝑖
= 𝐵(𝑖) > lim

௖→ஶ
൬

𝜕𝑏

𝜕𝑖
൰

௜ୀ௜ᇲ
= 𝐵 

Therefore, 

lim
௖→ஶ

𝐹𝑂𝐶 = 𝐵 − lim
௖→ஶ

൬
𝑑𝜏

𝑑𝑖
𝜙∗(𝑖, 𝑠௠) + 𝜏(𝑖)

𝜕𝜙∗

𝜕𝑖
൰

௜ୀ௜ᇲ
= 0 
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The non-zero second derivative of 𝜏 implies that the second term in the FOC limits to infinity as 𝑖 limits to 

infinity because the first derivative of 𝜏 is always increasing with 𝑖 by some value that is bounded away from 

zero. Therefore, since the first term is finite in the limit at 𝐵, the FOC can only be satisfied if 𝑖′ limits to a 

finite value as 𝑐 limits to infinity,  lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠௠) = 𝐼(𝑠௠). 

 If the cross-partial of 𝑏 limits to a positive value, then the first derivative of 𝑏 must limit to infinity 

with 𝑐. Now, rewriting the limit of the FOC 

lim
௖→ஶ

𝐹𝑂𝐶 = lim
௖→ஶ

൬
𝜕𝑏

𝜕𝑖
൰

௜ୀ௜ᇲ
− lim

௖→ஶ
൬

𝑑𝜏

𝑑𝑖
𝜙∗(𝑖, 𝑠௠) + 𝜏(𝑖)

𝜕𝜙∗

𝜕𝑖
൰

௜ୀ௜ᇲ
= 0 

It is clear by inspection that the first order condition can only be satisfied in the limit if the second term limits 

to infinity and this will only occur if lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠ௗ) = ∞. 

 (iii) The second order condition based on primitive functions is 

𝑆𝑂𝐶 ≡
𝜕ଶ𝑏(𝑖, 𝑐)

𝜕𝑖ଶ
−

𝑑ଶ𝜏(𝑖)

𝑑𝑖ଶ
𝜙∗(𝑖, 𝑠ௗ) − 2

𝑑𝜏(𝑖)

𝑑𝑖
ℎିଵᇱ

𝜕𝑢

𝜕𝑖
− 𝜏(𝑖) ቆℎିଵᇴ

൬
𝑑𝑢

𝑑𝑖
൰

ଶ

+ ℎିଵᇲ 𝑑ଶ𝑢

𝑑𝑖ଶ
ቇ 

If lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠௠) = 𝐼(𝑠௠), then all of the terms in the SOC are evaluated in the limit for a finite value of 

𝑖. The first term is finite based on Assumption 3.2 and all other terms are finite based on the finite value of 𝑖. 

Similarly, all terms except for the first term are non-zero at any finite 𝑖. 

 If lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠௠) = ∞, then we must evaluate each term in the SOC individually. The first term 

is zero. In order to see this, remember that the first derivative is unambiguously positive and the second derivative 

is unambiguously negative for any finite 𝑖 and 𝑐. As 𝑖 limits to infinity for any finite 𝑐, the second derivative 

as long as it exists must limit to zero for any finite c. Otherwise, we could find a value of 𝑖 large enough that 

the second derivative is within 𝜀 of its limiting negative value, and then an increase of 𝑖 by the current value of 

the first derivative divided by the lower bound of the second derivative (the limiting value plus epsilon) will result 

in a negative first derivative and a contradiction. If the first term limits to zero for any finite 𝑐, then it must 

limit to zero as 𝑐 and 𝑖′(𝑐) limit to infinity. The second term is finite and non-zero based directly on 

Assumption 3.2. The third term is finite and non-zero because the first derivative of 𝑢 is finite and non-zero 

and Assumption 3.1 implies that the first two terms in this product are finite and non-zero. The fourth term 

is zero because Assumption 2.5 implies that the second half of this term dominates the first half and 

Assumption 3.2 implies that 𝜏(𝑖)ℎିଵᇲ
 is finite and that the second derivative of 𝑢 limits to zero. QED 
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Assumption 3.3  The domain of the non-zero values of the probability distribution of 𝑐 is 

continuous, or equivalently for any 𝑐 where 𝑔(𝑐) ≠ 0 if there exists 𝑐௛ > 𝑐 where 𝑔(𝑐௛) = 0 

then 𝑔(𝑐′) = 0 for all 𝑐ᇱ > 𝑐௛ and if there exists 𝑐௟ < 𝑐 where 𝑔(𝑐௟) = 0 then 𝑔(𝑐′) = 0 for 

all 𝑐ᇱ < 𝑐௟. Given this continuity assumption, if the domain of 𝑔 is not bounded above, i.e. 

there exists a 𝑐௟ such that 𝑔(𝑐) ≠ 0 for all 𝑐 > 𝑐௟, then lim
௖→ஶ

(1 − 𝐺(𝑐))
𝑔(𝑐)൘ = 0. On the 

other hand, if the non-zero domain of 𝑔 ends at 𝑐௛, i.e. there exists a 𝑐௛ such that 𝐺(𝑐) ≠ 0 

for 𝑐௟ < 𝑐 < 𝑐௛ for some 𝑐௟ ≠ 𝑐௛ and 𝐺(𝑐) = 0 for 𝑐 > 𝑐௛, then either 𝑔(𝑐௛) ≠ 0 or 

lim
௖→௖೓

(1 − 𝐺(𝑐))
𝑔(𝑐)൘ = 0. 

Proposition 3. For all 𝑠௠ there exists 𝑥෤  such that  
ௗ௜ೣ

ௗ௦೘
> 0 for all 𝑥 > 𝑥෤ . 

Proof of Proposition 3. Differentiation of 𝑖௫(𝑥, 𝑠௠)  in Definition 3 yields  

𝑑𝑖௫

𝑑𝑠௠
=

𝑑𝑖ᇱ

𝑑𝑠௠
+

𝑑𝑖ᇱ

𝑑𝑐

𝑑𝑐௫

𝑑𝑠௠
 

The derivative of 𝑐௫(𝑥, 𝑠௠) can be found by differentiating Equation (9) with respect to 𝑠௠ and replacing 𝑥 

with 𝐺(𝑐௫). 

𝑑𝑐௫

𝑑𝑠௠
𝑔(𝑐௫)𝜙∗(𝑖ᇱ(𝑐௫, 𝑠௠), 𝑠௠) = (1 − 𝐺(𝑐௫))

𝑑𝑐∗

𝑑𝑠ௗ
𝑔(𝑐∗)𝜙∗(𝑖ᇱ(𝑐∗, 𝑠௠), 𝑠௠) + 

 𝐺(𝑐௫) ∫ 𝑔
௖೓

௖∗(௦೘)
(𝑐ᇱ)

ௗథ∗

ௗ௦೘
 𝑑𝑐ᇱ − ∫ 𝑔

௖ೣ

௖∗(௦೙)
(𝑐ᇱ)

ௗథ∗

ௗ௦೘
 𝑑𝑐ᇱ 

where 𝑐௛ is the maximum value of 𝑐 within the domain of the probability distribution, which could be positive 

infinity. 

The first term on the right-hand side of the equation above is negative based on Lemma 3 leading to 

an ambiguous derivative of 𝑖௫. This first term represents the same source of ambiguity discussed in Proposition 

2. As stop costs increase, 𝑐∗ falls and more minority motorists commit infractions. These new infracting 

motorists have lower values of 𝑐 shifting the distribution of infracting motorists to lower infraction levels. 

 However, as we increase 𝑐 and move to higher percentiles (𝑥  or 𝐺(𝑐௫) approaches 1), the first term 

goes to zero. Further, as 𝑐௫ approaches the 𝑐௛, 𝐺(𝑐௫) approaches 1, and the second and third terms exactly 

cancel out when 𝑐௫ = 𝑐௛. Therefore, if 𝑔(𝑐௛) ≠ 0, then the derivative of 𝑐௫ with respect to 𝑠௠ is zero at 

𝑥 = 1. 
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 If lim
௖→௖೓

𝑔(𝑐) = 0 whether 𝑐௛ is finite or infinite, we must evaluate the limit of the derivative of 𝑐௫. 

lim
௖ೣ→௖೓

𝑑𝑐௫

𝑑𝑠௠
= lim

௖ೣ→௖೓

1

𝜙∗(𝑖ᇱ(𝑐௫ , 𝑠௠), 𝑠௠)𝑔(𝑐௫)
൭(1 − 𝑥)

𝑑𝑐∗

𝑑𝑠ௗ
𝑔(𝑐∗)𝜙∗(𝑖ᇱ(𝑐∗, 𝑠௠), 𝑠௠) + 

 𝑥 ∫ 𝑔
௖೓

௖∗(௦೘)
(𝑐ᇱ)

ௗథ෩

ௗ௦೘
 𝑑𝑐ᇱ − ∫ 𝑔

௖ೣ

௖∗(௦೙)
(𝑐ᇱ)

ௗథ෩

ௗ௦೘
 𝑑𝑐ᇱቁ 

Now, we can rewrite last two terms in parentheses by extending the limit of the second integral from 𝑐௫ to 𝑐௛ 

and adding a new term to offset that extentions. 

lim
௖ೣ→௖೓

𝐺(𝑐௫) න 𝑔
௖೓

௖∗(௦೘)

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱ − න 𝑔

௖ೣ

௖∗(௦೙)

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱ

= lim
௖ೣ→௖೓

−(1 − 𝐺(𝑐௫) ) න 𝑔
௖೓

௖∗(௦೘)

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱ + න 𝑔

௖೓

௖ೣ

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱ 

Since the derivative of 𝜙෨ is finite, we can bound the magnitude of the last term by replacing this derivative with 

the maximum of its absolute value and factoring this out of the integral.  

lim
௖ೣ→௖೓

ቤන 𝑔
௖೓

௖ೣ

(𝑐ᇱ)
𝑑𝜙෨

𝑑𝑠௠
 𝑑𝑐ᇱቤ < lim

௖ೣ→௖೓

max
௖

ቤ
𝑑𝜙෨

𝑑𝑠௠
ቤ |(1 − 𝐺(𝑐௫) )| 

As a result, the first term and revised second term only depend upon 𝑐௫ through a linear function of (1 −

𝐺(𝑐௫) ) and the revised third term is bounded by a function that also depends linearly on (1 − 𝐺(𝑐௫) ). 

Based on Assumption 3.3, the limit of the ratio of (1 − 𝐺(𝑐) ) to 𝑔(𝑐) is zero and so the derivative of 𝑐௫ 

with respect to 𝑠௠ limits to zero as 𝑐 limits to 𝑐௛ even if 𝑔(𝑐) limits to zero. 

Using the equations for the derivatives from part (ii) of Lemma 2, we note that  

𝑑𝑖′

𝑑𝑐
= −

𝜕ଶ𝑏
𝜕𝑐𝜕𝑖
𝑆𝑂𝐶

 

𝑑𝑖′

𝑑𝑠௠
=

1

𝑆𝑂𝐶
ቆ

𝜕𝜏

𝜕𝑖

𝜕𝜙∗

𝜕𝑠௠
+ 𝜏(𝑖)

𝜕ଶ𝜙∗

𝜕𝑖𝜕𝑠௠
ቇ =

−1

𝑆𝑂𝐶
൬

𝜕𝜏

𝜕𝑖
ℎିଵᇲ

+ 𝜏(𝑖)ℎିଵᇴ 𝜕𝑢

𝜕𝑖
൰ 

If the cross-partial of 𝑏 limits to zero and based on Lemma 4 lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠ௗ) = 𝐼(𝑠ௗ) or alternatively if the 

probability distribution of 𝑐 has zero density above some finite value of 𝑐௛, then 𝑖′(𝑐) is finite in the limit. As 

a result, both derivatives of 𝑖′ are positive and finite. Therefore, the second term in the derivative of 𝑖௫ limits to 

zero and the first term is finite so that the derivative of 𝑖௫ must limit to a positive value as 𝑥 approaches one. 
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 On the other hand, if lim
௖→ஶ

𝑖ᇱ(𝑐, 𝑠ௗ) = ∞ and the density is non-zero for any finite 𝑐, we must 

evaluate these two derivatives in the limit as 𝑖 approaches infinity. Assumption 3.2 assures that the limit of the 

derivative of 𝑖′ with respect to 𝑐 is finite because the limit of the cross-partial of 𝑏 is finite and based on Lemma 

4 the SOC does not limit to zero. Assumption 3.1 assures that the limit of the derivative of 𝑖′ with respect to 

𝑠ௗ is bounded away from zero. Therefore, the first term in the derivative of 𝑖௫ limits to a positive value and the 

second term limits to zero. QED 
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Appendix B. Empirical Appendix 

Table B1: Estimated Change in the Accidents Rate for Minority Motorists in Daylight, USNO 
Daylight Definition 

LHS: African-American (1) (2) (3) (4) 
Baseline 

Daylight 
-0.01107*** -0.01019*** -0.00986*** -0.00960*** 

(0.00413) (0.00389) (0.00392) (0.00391) 
Observations 39076 39076 39076 39076 

Interaction – Black-White Police Shootings Odds Ratio 

Daylight x Police Shootings -0.00268* -0.00399*** -0.00437*** -0.00451*** 
(0.00152) (0.00146) (0.00152) (0.00151) 

Observations 39063 39063 39063 39063 
Interaction – Google Search Racism Index 

Daylight x Racism Index -0.00779** -0.01167*** -0.01125*** -0.01196*** 
(0.00348) (0.00337) (0.00347) (0.00345) 

Observations 39063 39063 39063 39063 
VOD Inconclusive States 

Daylight -0.04334*** -0.03245*** -0.03235*** -0.03277*** 
(0.01162) (0.01052) (0.01037) (0.01031) 

Observations 6587 6587 6587 6587 

C
on

tr
ol

s 

Hour of Day X X X X 
Day of Week X X X X 
Year X X     
State   X     
State x Year     X X 
Motorist/Vehicle       X 
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Table B2: Estimated Change in the Accidents Rate for Minority Motorists in Daylight, Fatality 
Risk Weighted  

LHS: African-American (1) (2) (3) (4) 
Baseline 

Daylight 
-0.00879 -0.01296** -0.01328** -0.01353** 
(0.00690) (0.00634) (0.00648) (0.00650) 

Observations 39076 39076 39076 39076 
Interaction – Black-White Police Shootings Odds Ratio 

Daylight x Police Shootings -0.00107 -0.00240 -0.00312* -0.00323** 
(0.00156) (0.00157) (0.00164) (0.00163) 

Observations 39063 39063 39063 39063 
Interaction – Google Search Racism Index 

Daylight x Racism Index -0.00937*** -0.01138*** -0.01056*** -0.01109*** 
(0.00381) (0.00373) (0.00389) (0.00385) 

Observations 39063 39063 39063 39063 
VOD Inconclusive States 

Daylight -0.04623*** -0.03683*** -0.03601*** -0.03640*** 
(0.01242) (0.01082) (0.01077) (0.01072) 

Observations 6587 6587 6587 6587 

C
on

tr
ol

s 

Hour of Day X X X X 
Day of Week X X X X 
Year X X     
State   X     
State x Year     X X 
Motorist/Vehicle       X 
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Table B3: Canonical Veil of Darkness Estimates, Logit 

LHS: African-American 
(1) (2) (3) (4) (5) (6) (7) (8) 

MA East TN West TN  

Daylight 
0.409*** 0.416*** 0.0104 -0.0150 0.00300 0.0706** 0.0637** 0.0817*** 
(0.0703) (0.0989) (0.0958) (0.0943) (0.0981) (0.0289) (0.0288) (0.0286) 

C
on

tr
ol

s 

Day of Week X X X X X X X X 
Time of Day X X X X X X X X 
County (or Town) X X X X   X X  

Year     X X   X X  

Motorist/Vehicle   X   X X  X X 
County x Year        X   X 

Observations 10203 10203 23515 23515 23515 102054 102054 102054 
Notes: Coefficient estimates are presented where * represents a p-value .1, ** represents a p-value .05, and *** represents a p-value .01 level of significance. 
Standard errors are clustered on county by year (TN) and patrol districts (MA) but robust to clustering on county and year separately (TN), patrol district 
(TN), or town (MA). The sample includes only traffic stops involving African-American or Non-Hispanic white motorists. The two Tennessee samples 
also include controls for year in the first two specifications of each panel.  
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Table B4: Estimated Change in Speed Distribution for Stopped Minority Motorists in Daylight, Demographic Controls and County by Year 
Fixed Effects for Tennessee 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 

Daylight 
0.0811 0.196 1.938 0.727 -0.318 -0.0289 0.482 -0.560 -1.260 
(1.117) (1.174) (1.260) (0.931) (1.128) (1.251) (1.389) (2.252) (2.918) 

African-American 
0.712 0.555 2.479* 2.164*** 1.467** 1.601* 1.262 5.639*** 6.154** 

(1.054) (1.053) (1.243) (0.738) (0.687) (0.860) (1.669) (1.801) (2.891) 
Daylight*African-
American 

-0.324 -0.221 -1.683 -2.230** -5.000** -6.748** -7.616** -10.79*** -11.93** 
(1.308) (1.311) (1.392) (1.011) (1.974) (2.624) (2.680) (2.739) (4.133) 

Obs. 10203 10203 10203 10203 10203 10203 10203 10203 10203 

East 
TN 

Daylight 
0.372 0.327 0.0145 0.00964 0.0284 0.0854 0.374 0.459 -0.100 

(0.695) (0.454) (0.274) (0.273) (0.318) (0.354) (0.461) (0.699) (0.991) 

African-American 
-2.008 -1.807** -1.190** -0.877 -0.780 -0.989 -0.180 -1.187 -1.958 
(1.236) (0.868) (0.551) (0.535) (0.614) (0.711) (0.892) (1.322) (1.682) 

Daylight*African-
American 

-0.822 -1.023 -0.812 -0.700 -1.113 -1.324* -2.757*** -1.697 -1.684 
(1.334) (0.980) (0.629) (0.574) (0.681) (0.738) (0.989) (1.486) (2.028) 

Obs. 23515 23515 23515 23515 23515 23515 23515 23515 23515 

West 
TN 

Daylight 
0.153 0.277* 0.0104 -0.0326 -0.0999 0.0761 0.138 -0.0119 -0.0466 

(0.108) (0.156) (0.108) (0.146) (0.121) (0.171) (0.235) (0.296) (0.397) 

African-American 
0.193 0.600*** 0.665*** 0.685*** 0.331* 0.738*** 0.754** 0.637* 0.319 

(0.131) (0.164) (0.135) (0.200) (0.180) (0.240) (0.309) (0.347) (0.502) 

Daylight*African-
American 

-0.115 -0.214 -0.538*** -0.865*** -0.543*** -0.854*** -1.015*** -0.781** -0.903 
(0.146) (0.193) (0.153) (0.218) (0.184) (0.265) (0.356) (0.395) (0.572) 

Obs. 102054 102054 102054 102054 102054 102054 102054 102054 102054 
Notes: Coefficient estimates are presented such that * represents a p-value .1, ** represents a p-value .05, and *** represents a p-value .01 level of 
significance. Standard errors are clustered on county by year in East and West Tennessee (TN) and patrol districts in Massachusetts (MA). Bootstrapping 
one-thousand random samples, we find that the p-value for a one-sided permutation test of joint significance on all nine quantiles is equal to 1.4 percent 
for Massachusetts, 0.4 percent for East Tennessee, and 0.1 percent for West Tennessee. The sample includes only traffic stops involving African-American 
or Non-Hispanic white motorists. Controls include observed motorist and vehicle attributes, time of day, day of week, and geographic location fixed-
effects. The two Tennessee samples also include controls for county by year fixed effects. Relative speed is calculated as speed relative to the speed limit 
and multiplied by one hundred. 
 



66 
 

Table B5: Falsification Test over Gender (Panel 1) and over Vehicle Type (Panel 2) with White Motorists 

Motorist Gender 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 
Daylight*Male 

-1.265 -0.516 -0.267 -0.752 -0.226 0.0118 0.850 0.179 0.348 
(0.847) (0.789) (0.801) (1.061) (1.293) (1.628) (1.842) (2.076) (4.474) 

Obs. 8334 8334 8334 8334 8334 8334 8334 8334 8334 
 (0.602) (0.359) (0.254) (0.227) (0.189) (0.267) (0.284) (0.646) (1.202) 

East 
TN 

Daylight*Male 
-0.471 -0.186 0.260 0.314* 0.110 -0.0347 -0.265 -0.306 -1.004 
(0.493) (0.353) (0.274) (0.158) (0.336) (0.431) (0.513) (0.841) (1.314) 

Obs. 22424 22424 22424 22424 22424 22424 22424 22424 22424 
 (0.0957) (0.162) (0.137) (0.145) (0.125) (0.172) (0.171) (0.254) (0.319) 

West 
TN 

Daylight*Male 
-0.00342 0.0480 -0.00976 -0.0928 -0.0347 -0.307 -0.285 -0.779** -0.285 
(0.151) (0.197) (0.193) (0.193) (0.160) (0.187) (0.219) (0.333) (0.452) 

Obs. 83076 83076 83076 83076 83076 83076 83076 83076 83076 
Domestic vs. Imported Vehicle 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 
Daylight*Domestic 

-0.147 -0.554 -0.910 0.118 0.654 0.576 0.280 1.457 -1.389 
(1.158) (1.234) (0.914) (1.098) (1.007) (0.942) (1.302) (2.182) (2.221) 

Obs. 8334 8334 8334 8334 8334 8334 8334 8334 8334 
 (0.411) (0.490) (0.238) (0.245) (0.251) (0.316) (0.538) (0.865) (1.489) 

East 
TN 

Daylight*Domestic 
0.104 -0.655 -0.338 0.00464 -0.192 -0.146 -0.451 -0.556 -1.559 

(0.649) (0.718) (0.302) (0.323) (0.303) (0.372) (0.532) (0.866) (1.711) 
Obs. 22424 22424 22424 22424 22424 22424 22424 22424 22424 
 (0.118) (0.177) (0.125) (0.179) (0.134) (0.198) (0.283) (0.325) (0.381) 

West 
TN 

Daylight*Domestic 
0.131 0.0655 -0.0621 -0.119 -0.0466 0.0600 -0.105 0.0670 0.208 

(0.127) (0.182) (0.144) (0.176) (0.131) (0.221) (0.288) (0.311) (0.411) 
Obs. 83076 83076 83076 83076 83076 83076 83076 83076 83076 

Coefficient estimates are presented such that * represents a p-value .1, ** represents a p-value .05, and *** represents a p-value .01 level of significance. 
Standard errors are clustered on county by year in East and West Tennessee (TN) and town or patrol districts in Massachusetts (MA. Bootstrapping one-
thousand random samples, we find that the p-value for a one-sided permutation test of joint significance on all nine quantiles is equal to 85.7 percent for 
Massachusetts, 72.3 percent for East Tennessee, and 91.1 percent for West Tennessee. The sample includes only traffic stops for speeding violations 
involving Non-Hispanic white motorists. Controls include time of day, day of week, and geographic location fixed-effects. The two Tennessee samples 
also include controls for year. Relative speed is calculated as speed relative to the speed limit and multiplied by one hundred. 
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Table B6: Falsification Test over Motorist Age, Vehicle Age and Vehicle Color with White Motorists 

Motorist under the Age of 30 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 
Daylight*Young 
Motorist 

0.302 -0.113 0.626 0.539 -0.735 0.429 1.692 0.576 1.739 
(0.482) (0.611) (0.713) (0.843) (0.947) (1.354) (1.467) (1.391) (1.853) 

Obs. 8334 8334 8334 8334 8334 8334 8334 8334 8334 
Vehicle is Older than Five Years 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 
Daylight*Old 
Vehicle 

1.467* -0.115 0.0108 1.323* 0.454 0.423 -0.229 -0.666 -0.336 
(0.771) (0.742) (0.782) (0.643) (0.654) (0.792) (1.079) (1.656) (2.345) 

Obs. 8334 8334 8334 8334 8334 8334 8334 8334 8334 
Vehicle is Red 

LHS: Rel. Speed 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

10 pct 20 pct 30 pct 40 pct 50 pct 60 pct 70 pct 80 pct 90 pct 

MA 
Daylight*Red 
Vehicle 

2.563 2.179 0.942 1.616 1.209 1.836 3.364 2.690 1.561 
(1.942) (2.257) (2.145) (1.740) (1.796) (1.959) (2.421) (3.013) (4.418) 

Obs. 8334 8334 8334 8334 8334 8334 8334 8334 8334 
Notes: Coefficient estimates are presented such that * represents a p-value .1, ** represents a p-value .05, and *** represents a p-value .01 level of 
significance. Standard errors are clustered on counties (TN) and patrol districts (MA). Bootstrapping one-thousand random samples, we find that the p-
value for a two-sided permutation test of joint significance on all nine quantiles is equal to 46.7 percent for MA-SP. Results estimated using absolute 
rather than relative results are generally robust and qualitatively similar to our primary estimates. The sample includes only traffic stops involving Non-
Hispanic white motorists. Controls include time of day, day of week, and patrol location fixed-effects. The Tennessee sample also includes year indicators. 
Relative speed is calculated as speed above the limit relative to the limit and multiplied by one hundred
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C. Calibration Appendix 

C.1 Optimization Strategy 

Because the surface of this function is highly non-linear and appears to contain multiple local 

minima and inflections points, we first use a derivative-free Simplex-based optimization algorithm, 

Subplex (Rowan, 1990), to identify local minima. Once we have identified a local minimum, we use a 

second optimization routine based on quadratic approximations to the surface, BOBYQA (Powell 

2009), to precisely locate that minimum and verify that the gradients over all parameters are 

approximately zero in this location. Finally, after identifying a specific local minimum that fits the data 

well, we will identify a global minimum using a modified evolutionary-based optimization routine, 

ESCH as described in da Silva Santos (2010) and accessed via an open source library for non-linear 

optimization (NLopt). The nature of evolutionary algorithms used for global optimization requires 

that limits be placed on the range of each parameter, and we use the information generated from the 

various local optimizations to place these limits. The specific limits for each parameter are shown in 

Appendix Table C1.1   

We calibrate the parameters separately for the moments from Massachusetts, East Tennessee, 

and West Tennessee samples in a series of stages using the results of each stage as initial values in the 

next stage. 

 

1. First, we focus on matching the minority daylight speed distribution using the 

Simplex-based algorithm, while calibrating just distributional parameters, i.e. mean, 

variance, and skewness, but targeting an additional moment based on a specific 

positive fraction of minorities not infracting in daylight. Holding other parameters 

fixed at values that were found based on experimentation.  

2. We next match both the daylight speed distribution and the difference between 

the daylight and darkness distributions for minorities additionally calibrating all 

motorist parameters that are common between groups plus the minority daylight 

stop cost, i.e. 𝛼ଵ, 𝛼ଶ, 𝑏଴, 𝜇, and 𝜏଴. At this stage, we also drop the target on the 

                                                      
1 This second routine also requires that the analyst place limits on the parameter space, but this is a relatively non-restrictive 
process since we are simply refining an already identified local minimum. In practice, the search for the local minimum 
never crosses the bounds that we set on the parameters. 
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fraction of minorities not speeding, which was simply used to anchor the initial 

calibration.  

3. We then target all 26 moments and calibrate all 18 parameters. We first identify 

the local minimum using the simplex-based algorithm, but as mentioned above, 

we locate the local minimum precisely using quadratic approximations to the 

surface. 

4. We repeat the process outlined in steps 1-3 for initial fractions minority not 

infraction in daylight between 0.05 and 0.40 in increments of 0.05 typically 

identifying different local minima for each percent not infracting value (even 

though that moment restriction is removed starting in step 2). We then identify 

the local minimum arising from an initial fraction not infracting moment 

restriction in step 1 that results in the lowest overall Mean Squared Error in step 

3. We also verify that this minimum is internal to the range of fractions considered.  

5. Finally, we use an evolutionary-based optimization routine using the best local 

optimum identified in step 4 and imposing parameter limits that were developed 

by observing the optimization over many possible local minima. Again, the 

quadratic approximation technique is used to precisely locate the minimum once 

the entropy-based routine has identified the minimum. 

 

Note that the optimization also includes a penalty function starting below 2 percent of minority 

motorists not infracting in daylight in order to rule out corner solution equilibria where all motorists 

commit infractions. The final local and global optimums always imply a percent minority motorists 

not infracting above 2 percent so that the penalty function has no direct impact on the final optimum 

identified. 

C.2. Calibration Weights 

Theory does not provide guidance for establishing the weights on the moments. Our 

simulation is matching 6 statistics: African-Americans and white daylight speed distribution, African-

Americans and white daylight to darkness shift in the speed distribution, fraction stopped motorists 

minority in darkness and VOD test statistic. Equal weights with 6 statistics would imply a weight of 

16.7 percent for each statistic. However, one might place more weight on the speed distribution 

statistics since they represent the sum of 6 individual moment squared deviations. On the other hand, 

we might limit the weight on these moments since the number of moments is arbitrary based on the 
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number of speed percentiles considered. For our baseline calibration, we place three times the weight 

on the speed distribution statistics so that the weight on those four are 21.5 percent each, and the 

weight on the fraction stopped motorists minority and VOD test statistic are 7 percent each. We also 

run robustness tests where we use an equal weight of 16.7 percent, and where we place six times the 

weight based on the 6 moments of the speed distribution for a weight of 23.25 percent for the four 

speed distribution statistics and 3.5 percent for both percent minority stopped and the VOD test 

statistic. 

We conduct a robustness test by modifying the weights. The first panel of Table C4 presents 

the results from Table 8. The second panel applies an equal weight of 16.7 percent to the four speed 

distribution components and two moments based on the percent minority stopped. The third panel 

assigns approximately six times the weight to the four speed distribution moments that have six 

components so each of those moments receive a weight of 23.25 percent and the percent minority 

stopped based moments receive a weight of 3.5 percent each.2 The basic results are relatively robust 

with similar daylight minority stop costs across the three calibrations, and substantially larger VOD 

test statistics after adjusting for minority driver changes in behavior. The magnitude of the adjusted 

VOD test statistics is notably sensitive to the weights only for West Tennessee. The largest adjusted 

VOD test statistic arises for the third panel where a larger weight is placed on matching the speed 

distribution shift, which makes sense since the baseline calibration understated the speed distribution 

shift in West Tennessee. Surprisingly, placing lower weight on the speed distribution contributions 

also increases the West Tennessee adjusted VOD test statistic. A better match to the VOD test 

statistic, which now has higher weight, requires lower police stop costs for minorities in daylight, 

which appears to have increased the shift in the speed distribution even as the total fit of the speed 

distribution moments eroded due to having lower weight. The calibrated parameters based on the 

alternative weights are shown in Table C5. 

 

 

  

                                                      
2 The calibrated parameters for these alternative weights are shown in Appendix Tables B4-B6 for the three sites.  
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Table C1:   Minimum and Maximum Values for Parameters 
 

Parameters Min Max 

α₁ 0 1 

Μ 1 4 

δ₀ 0 50 

A 0.8 1.5 
α₂ 0 3 

K 100 500 

Η 1 1.5 

b₀ 0 200 

τ₀ 50 800 

σ_m 0 3 

σ_w 0 3 

mean_m -4 2 

mean_w -4 2 

skew_m -50 100 

s_v 44 44 

MA 

skew_w -50 100 

s_vm 0 15 

s_vw 44 60 

E TN 

skew_w -50 600 

s_vm 30 44 

s_vw 44 50 

W TN 

skew_w -50 100 

s_vm 30 44 

s_vw 44 47 
Notes. Table presents the bounds on parameter values used for the envolutionary based optimization selected 
based on the local optima identified during the initial stages of optimization. Most parameter limits are the 
same by site with the exception of the minority and white daylight stop costs which are influenced heavily by 
the empirical racial composition of stops, and for the white skewness where we observed unusually high 
levels of skewness in the white population in some of the initial calibrations for East Tennessee.  
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Table C2: Calibration Results 

  
Massachusetts  East Tennessee West Tennessee 

Data Simulation Data Simulation Data Simulation 
White Speed Distribution Daylight 

20th Percentile 12.58119726 12.8990268 13.31786436 13.3819359 11.28808471 11.0761 
40th Percentile 16.42617039 16.2500592 16.22345474 15.8291645 13.56950803 13.4798 
60th Percentile 20.63785929 20.3829396 18.95081273 18.8376353 15.9148927 16.184 
80th Percentile 26.69713667 26.8608619 23.30887568 23.5328263 19.74395994 20.0753 
90th Percentile 33.27770052 33.3347123 27.7676207 27.9992266 23.69906791 23.7206 
95th Percentile 41.03735374 40.9859405 33.42494972 33.2383482 28.02024315 27.7701 

Difference Daylight and Darkness  
20th Percentile -0.49062111 -0.2660177 0.00422909 -0.0000143 -0.11309278 0 
40th Percentile -0.38312866 -0.2971691 -0.11176114 0.0008881 -0.09190034 -0.0001 
60th Percentile 0.2679906 -0.3117633 -0.03097062 0.0001257 -0.02815239 -0.0001 
80th Percentile -0.57652247 -0.3265926 -0.03718293 -0.0000601 0.03660167 0 
90th Percentile 0.16650752 -0.34577 -0.07980587 0.0004908 0.26197307 -0.0001 
95th Percentile -1.70325014 -0.5461246 -0.2129078 0.0002214 0.46968762 0 
Notes: Empirical speed distribution in miles per hour based on regressing relative speed on day of week, time of day, geographic and for Tennessee 
year controls, calculating the residual, adding the means of the controls back to the sample and then calculating the miles per hour based on the mode 
speed limit of traffic stops for each site. The simulated moments arise from the global optimum identified by applying an evolutionary based 
optimization routine called ESCH and precisely located by applying a second optimization routine based on quadratic approximations to the surface 
BOBYQA. The calibrated parameters used to calculate these moments are shown in Appendix Table 18. 
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Table C3:   Calibrated Parameters 
 

Parameters Sites 

 MA E TN W TN 

α₁ 0.522029 0.509337 0.999519 

Μ 1.55008 1.52118 2.18566 

δ₀ 5.14442 35.5046 3.0628 

A 1.23914 1.1562 0.987308 

α₂ 0.509207 0.421155 1.4297 

K 320.493 331.992 235.093 

Η 1.00387 1.00018 1.24943 

b₀ 16.7978 17.7386 128.356 

τ₀ 139.826 122.94 495.065 

σ_m 1.23344 1.16092 0.513587 

σ_w 1.66537 1.47121 0.53856 

mean_m -0.157625 -0.601036 -2.04262 

mean_w -1.24202 -1.02003 -2.08983 

skew_m 0.269799 0.286773 2.5971 

skew_w 11.551 3.47682 9.46006 

s_vm 0.0057178 30.1313 37.7525 

s_vw 44.9736 44.0005 44.0004 

s_v 44 44 44 

MSE 0.7483 0.638 0.2591 
Notes. Each column of this table contains the calibrated parameters for one of the three sites for our baseline 
set of weights where the speed distribution components each have a weight of  21.5 and the share stops 
minority in darkness and the VOT test statistics (times 100) each have a weight of 3.5%. The parameters for 
the Massachusetts sample are in column 1 labelled MA. Column 2 contains parameters for East Tennessee 
labelled E TN, and column 3 is West Tennessee labeled W TN. The last row shows the mean squared error 
of the moments for each site.   
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Table C4: Calibration Results Related to Racial Differences in Police Stop Behavior 

  Massachusetts East Tennessee West Tennessee 
Original Weights 

Minority Stop Cost Diff 43.994 13.887 6.247 

Simulated VOD Test 1.379 0.997 1.090 

Adjusted VOD Test 2.736 1.223 1.173 

Equal Weights 
Minority Stop Cost Diff 43.994 13.9996 10.125 
Simulated VOD Test 1.38 0.994 1.091 
Adjusted VOD Test 2.736 1.226 1.271 

Speed Moments Times Six 
Minority Stop Cost Diff 43.979 12.348 12.38 
Simulated VOD Test 1.38 1 1.09 

Adjusted VOD Test 2.736 1.195 1.338 

Notes. The first panel repeats the results from Table 12 using the original weights. The second 
panel presents results where the four speed distributions receive the same weight as each of 
the moments associated with percent minority stopped. The third panel presents results where 
the speed component contribution receives six times the weight because those components 
contain the mean squared error for six distinct moments. 
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Table C5:   Calibrated Parameters for Massachusetts with Alternative Weights 
 

Parameters Massachusetts East Tennessee West Tennessee 

Weights Equal Speed*Six Equal Speed*Six Equal Speed*Six 

α₁ 0.522111 0.521889 0.509832 0.509053 0.999859 0.999519 

Μ 1.55032 1.55012 1.52139 1.52119 2.18541 2.18367 

δ₀ 5.15151 5.14515 35.512 35.5046 3.48442 3.28581 

A 1.23914 1.23901 1.1561 0.995303 0.987312 0.987276 

α₂ 0.509362 0.509277 0.423291 0.421159 1.42969 1.42973 

K 320.355 320.48 330.47 331.94 235.036 233.854 

Η 1.00383 1.00385 1.00002 1.00073 1.25016 1.2497 

b₀ 16.7934 16.7978 17.7361 10.4695 129.092 128.877 

τ₀ 139.812 139.807 122.763 122.94 506.544 506.865 

σ_m 1.23477 1.23406 1.16421 1.16237 0.516049 0.516706 

σ_w 1.66587 1.66551 1.46317 1.47036 0.53923 0.538645 

mean_m -0.160836 -0.157642 -0.61939 -0.601093 -2.04261 -2.04212 

mean_w -1.24327 -1.24219 -1.0126 -1.0212 -2.09014 -2.08981 

skew_m 0.268804 0.26982 0.293491 0.285781 2.59473 2.59168 

skew_w 11.5521 11.5507 3.4744 3.4276 9.43347 9.47268 

s_vm 0.104016 0.0209493 30.0004 31.6522 33.8754 31.6203 

s_vw 44.9798 44.9742 44.0514 44.0331 44.0022 44.2422 

s_v 44 44 44 44 44 44 

MSE 0.5781 0.8044 0.4829 0.6164 0.168 0.2335 
Notes. This table presents the calibrated parameters for different weights for the State of 
Massachusetts sample. The first column presents parameters for the baseline weights. The second 
column presents parameters for equal weights of 16.7% for the four speed components and the two 
components based on share minority stopped (share in darkness and VOD test), and the third 
column presents parameters for weights where the speed distribution components that contain 6 
moments each have approximately 6 times the weight or 23.25% as the weight of 3.5% for the share 
stops minority in darkness and the VOD test statistic. 

 

 




