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Abstract

Objectives: Debate about the cause of IQ score gaps between Black and White

populations has persisted within genetics, anthropology, and psychology. Recently,

authors claimed polygenic scores provide evidence that a significant portion of differ-

ences in cognitive performance between Black and White populations are caused by

genetic differences due to natural selection, the “hereditarian hypothesis.” This study
aims to show conceptual and methodological flaws of past studies supporting the

hereditarian hypothesis.

Materials and methods: Polygenic scores for educational attainment were con-

structed for African and European samples of the 1000 Genomes Project. Evidence

for selection was evaluated using an excess variance test. Education associated vari-

ants were further evaluated for signals of selection by testing for excess genetic dif-

ferentiation (Fst). Expected mean difference in IQ for populations was calculated

under a neutral evolutionary scenario and contrasted to hereditarian claims.

Results: Tests for selection using polygenic scores failed to find evidence of natural

selection when the less biased within-family GWAS effect sizes were used. Tests for

selection using Fst values did not find evidence of natural selection. Expected mean

difference in IQ was substantially smaller than postulated by hereditarians, even

under unrealistic assumptions that overestimate genetic contribution.

Conclusion: Given these results, hereditarian claims are not supported in the least.

Cognitive performance does not appear to have been under diversifying selection in

Europeans and Africans. In the absence of diversifying selection, the best case esti-

mate for genetic contributions to group differences in cognitive performance is sub-

stantially smaller than hereditarians claim and is consistent with genetic differences

contributing little to the Black–White gap.
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1 | INTRODUCTION

The debate over the role of genetics in the claimed IQ gap between

Black and White populations has been extraordinarily long-lasting.

Claims of the putative intellectual inferiority of “the Black race” date

back to the roots of colonial expansion and slavery (Saini, 2019) and

have been persistent despite the general weakness of evidence in

support of the claim. Over the last half-century, several key authors
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have forwarded a diverse set of evidence from genetics, anthropol-

ogy, and psychology to support two primary claims of what has been

called the “hereditarian hypothesis”: (a) genetic differences between

races substantially contribute to differences in cognitive ability, as

measured by IQ tests, which are impervious to alterations in the envi-

ronment (Jensen, 1969a; Jensen, 1985; Rushton & Jensen, 2005); and

(b) that the relevant genetic differences between races were produced

by divergent natural selection that favored higher cognitive ability

outside of Africa (Jensen, 1974; Lynn, 2006; Lynn & Vanhanen, 2006;

Rushton, 1996, 2000).

However, these claims have often relied on indirect evidence of

genes and their activity, relying greatly on ecological regressions,

adoption studies, and admixture correlations. These sources of evi-

dence have been criticized on empirical grounds by previous authors

(Centerwall, 1978; Thomas, 2016; Waldman et al., 1994; Wicherts

et al., 2010). Additionally, the lack of direct evidence has been noted

as a looming issue (Loehlin, 2000), marking a contrast between traits

like intelligence and traits likes sickle cell anemia, prostate cancer and

end-stage kidney disease, where direct genetic investigation was able

to shed light on population differences (Freedman et al., 2018; Freed-

man & Haiman, 2006; Piel & Patil, 2010).

Recently, behavioral geneticists have claimed major progress in

uncovering the genetic basis of cognitive performance. These

advances extend on previous research involving twin studies, which

allowed only indirect estimation of genetic contributions

(Polderman & Benyamin, 2015), by leveraging genome sequencing

and large samples of unrelated individuals to perform genome-wide

association studies (GWAS) that identify specific genetic variants

associated with cognitive performance. The most recent GWAS on

educational attainment (EA) and cognitive performance (CP), Lee

et al. (2018), identified over 1000 single-nucleotide polymorphisms

(SNPs) that are significantly associated with higher EA in a sample of

over 1 million people of European ancestry. The combined effects of

all associated SNPs in Lee et al. (2018), called a polygenic score (PGS),

can explain only between 10% and 13% of variance in EA and 7%–

10% of variance in CP. Lee et al. (2018) also estimate effect sizes for

associate SNPs at the within-family level by analyzing genetic variance

between a large sample of siblings, and compare these effect sizes to

those from the main between-family (population level) analysis to fur-

ther evaluate the role of causal and confounding effects in GWAS

results. Beyond expanding the understanding of the genetics of these

traits, Lee et al. (2018) also provided valuable community resources in

the form of publicly available GWAS summary statistics that provide a

full list of EA and CP associated SNPs and the estimated effect size on

these traits.

Some authors have recently attempted to use this GWAS to

provide support for the hereditarian hypothesis using educational

attainment PGS as direct genetic evidence (Lasker et al., 2019;

Piffer, 2019). These studies profess to support the first hereditarian

claim of substantial genetic contribution to race differences (Lasker

et al., 2019) and the second hereditarian claim that divergent natural

selection between races contributes to racial phenotypic differences

(Piffer, 2019); however, there are key deficiencies in their

methodology. Both analyses are affected by systematic biases in

between-family polygenic scores applied to people from groups that

were not included in the original GWAS. Results from Duncan and

Shen (2019) show that across a range of traits, the estimated value

for non-European populations using polygenic scores is biased and

explains much less variance than in European populations. African

ancestry is the most affected, with an average effect size only 50%

of the size of the same genetic variants identified in Europeans, and

there is even larger misestimation for phenotypic traits related to

cognition (Duncan & Shen, 2019). In fact, in Lee et al. the polygenic

score accounts for 1.6% of variation in Black individuals in

AddHealth compared with 9.2% in White individuals. Additional

problems with these analyses exist. For example in Piffer (2019), the

correlation of observed national IQ scores and polygenic scores of

the 1000 Genomes populations are taken as evidence that differ-

ences between populations have been caused by natural selection,

even though this is not an accepted test for polygenic selection. In

Lasker et al. (2019), many of the variables that the authors attempt

to control for in are poorly measured and weaken their conclusions,

such as skin color predicted from genotype (Carratto et al., 2019)

and insufficient socioeconomic measures that include only parental

education, even though income (and in particular permanent income)

plays a substantial role in attenuating racial achievement gaps

(Rothstein & Wozny, 2013).

The biases of these methods makes it problematic to consider

previous findings from Piffer (2019) and Lasker et al. (2019), which

apply PGS to the Black–White IQ gap as evidence in support of the

genetic hypothesis. The present analysis aims to more rigorously test

the two main claims of the hereditarian hypothesis against the null

hypotheses that (a) allele frequency differences between Black and

White populations are consistent with neutral evolutionary processes,

and (b) the genetic basis of differences in EA and CP render similar

cognitive abilities between Black and White populations. First,

I address shortcomings of previous applications of polygenic score

analysis, using recent methods that leverage genomic data and popu-

lation genetic theory and avoid or remedy many of the known biases

of polygenic scores. Contrary to past attempts by Piffer (2019) and

Lasker et al. (2019), by accounting for biases in polygenic scores and

using formal tests for divergent selection I hereby demonstrate that

allele frequency differences are in fact consistent with a neutral evolu-

tionary trajectory. Second, I demonstrate that even when adopting

several unrealistic assumptions held by proponents of the hereditarian

hypothesis and their own National IQ data (which is heavily biased

against African samples), the expected genetic contribution to differ-

ences in IQ scores under neutral evolution is insufficient to support

the hereditarian position.

For clarification, the terms “White” and “Black” will be used

throughout this paper, not as an endorsement of their status as bio-

logical categories but to reflect the conceptual framework used by

hereditarian authors on this topic. Modern population genetics makes

it clear that, even though the people in the samples I used would likely

be racialized (in terms of their social identity), these racial categories

do not accurately reflect genetic ancestry.
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2 | METHODS

2.1 | Data set, quality filtering, and SNP clumping

Phase 3 of the 1000 Genomes project (1000 Genomes Project

Consortium, 2015), based on reference-build hg37, was downloaded

for autosomal chromosomes. I filtered samples to only include the

European superpopulation (EUR) which consists of 503 individuals

from CEU (99), TSI (107), FIN (99), GBR (91), and IBS (107)

populations and the African superpopulations which consists of

504 individuals from YRI (108), LWK (99), GWD (113), MSL (85), and

ESN (99) populations. I filtered variants to remove those with minor-

allele-frequency less than 0.01 and those loci that deviate from

Hardy–Weinberg Equilibrium at p < 1 × 10−6 independently for each

subpopulation, as in Guo et al. (2018), to remove low quality SNPs

and genotyping errors. After filtering separately, these populations

were merged in with Plink V. 1.9 (Purcell & Neale, 2007) (http://pngu.

mgh.harvard.edu/purcell/plink/), and variants with a genotyping rate

less than 10% were removed to filter out variants present in only one

population. These filtering parameters may introduce biases to the

polygenic score estimates, however, removing genotyping errors and

missing variants are a vital component of quality filtering (Graffelman

et al., 2017). Additionally, because the same procedures were per-

formed on SNPs selected from the GWAS, which are used for the null

distribution, there should be no relative bias that would result in a

false-positive.

The full reported summary statistics, including physical location,

effect size, and standard error, and sample size, from Lee et al. (2018)

were downloaded from https://www.thessgac.org/data for both edu-

cational attainment and cognitive performance. The educational

attainment data consisted of 10,101,242 SNPs associated with edu-

cational attainment from independent discovery panels, totaling

766,345 individuals and the cognitive performance data consisted of

10,098,325 SNPs from independent discovery panels, total 257,828

individuals. These discovery panels consisted of 71 total cohorts, only

using people of European ancestry. In total these variants account for

�10%–15% of variation in educational attainment and cognitive per-

formance in the discovery panels, while they only explained 1.6% of

variance when African-American samples were analyzed. Addition-

ally, 82,609 SNPs from within-family analyses were used for the

study. These SNPs were ascertained using four cohorts with sibling

data, total 22,135 sibling pairs from the Swedish Twin Registry's

Twingene study, the Swedish Twin Registry's Screening Across the

Lifespan Twin Youth study, the UK Biobank and the Wisconsin Lon-

gitudinal Study. Compared with the between-family effect sizes,

within-family effect sizes showed sign concordance (both effect trait

in same direction) 56.2% of the time for the most laxed p-value filter-

ing, and 65.2% at the strictest p-value filtering. Additionally, a within-

family regression analysis suggests that within-family parameters are

�40% smaller than the between-family GWAS effect sizes. SNPs

with both within- and between family effect sizes are compared in

Figure 1.

2.2 | Polygenic selection analysis

Polygenic selection analysis used the set of 1,271 genome-wide sig-

nificant lead SNPs associated with both educational attainment and

cognitive performance in a sample of 1,131,881 individuals reported

in the supplemental of Lee et al. (2018), which explained a total 3.6%

of variance in educational attainment in European individuals. Of the

1,271 SNPs, there were 685 present in the 1000 genomes data sets

after filtering that also had both within- and between-family effect

sizes. These 685 SNPs were used to calculate population specific

polygenic scores (PGS) as:

PGS=
Xn

i=1
FAi �effi

where FAi is the population frequency of the effect allele for SNP i

and effi is the SNP specific effect size estimate. The squared differ-

ence of the African PGS and European PGS was used to measure the

difference between estimated genetic values between populations

based on both between—and within-family effect sizes. To see

whether the between family PGS difference was larger than expected,

an empirical null distribution was calculated by randomly flipping the

sign of effect size estimates for 10,000 permutations. The resulting

permuted squared population PGS differences were compared with

the observed difference, allowing the calculation of an empirical

p-value based on the proportion of random samples greater than or

equal to the observed squared PGS difference.

F IGURE 1 Comparison of between-family and within-family
effect sizes for variants which have both. Figure generated in R 3.6
0.3 with ggplot2 (Wickham, 2016)
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For within-family effect sizes, I constructed an empirical null dis-

tribution of SNPs that were matched to derived allele frequency and

LD score quintiles. This was done to control for potential biases from

systematic differences in derived allele frequency of GWAS risk alleles

between African and non-African populations, which had been identi-

fied in previous work (Kim et al., 2018; Lee et al., 2018). First, I made

20 derived allele frequency and LD Score bins for the 685 lead GWAS

SNPs from Lee et al. (2018) with within-family effect sizes and

derived/ancestral allele status information to the empirical null distri-

bution generated from matched SNPs. Next, I matched the SNPs of

each GWAS 10,000 times, and each matched SNP was given the same

within-family effect size as its matching GWAS SNP. Finally, I gener-

ated polygenic scores by multiplying the GWAS SNP within-family

effect size by the matched SNP effect allele frequency in African and

European samples and calculated the squared polygenic score differ-

ence for the 10,000 matched SNP sets to generate an empirical null

distribution. Similar to the Qx analysis of Berg and Coop (2014), sig-

nificant divergence from the empirical null distribution is taken as evi-

dence of divergent polygenic selection.

2.3 | Fst differentiation analysis

I performed LD based clumping in Plink on the 10,101,242 SNPs asso-

ciated with educational attainment and 10,098,325 SNPs associated

with cognitive performance with a p-value cutoff of 5 × 10−6 and r2

cutoff of 0.01, using a distance threshold of 1 Mb as done in Guo

et al. (2018). This resulted in 1259 independent SNPs for educational

attainment and 602 independent SNPs for cognitive performance.

Fst and LD Scores were calculated for the entire filtered SNP set

in vcftools and LDSC, respectively (Bulik-Sullivan et al., 2015;

Danecek & Auton, 2011). As done in Guo et al. (2018), SNPs were

divided into 20 minor allele frequency (MAF) bins and 20 LDScore

bins and 10,000 SNPs were matched for each GWAS SNP of the

clumped data sets with the same MAF and LD Score bin, resulting in

10,000 control SNP sets with comparable minor-allele frequency and

LD Score. Average Fst of the 10,000 control SNP sets were used to

create an empirical null distribution, allowing a comparison of the

mean Fst of the GWAS SNPs with the empirical null distribution with

a two-sided one-sample z-test.

2.4 | Predicted phenotypic differences based on
trait associated SNP Fst

Suppose we granted the implicit assumptions of the hereditarian posi-

tions (constant additive effects within and across all possible environ-

ments, etc.) In this case only natural selection or genetic drift can

contribute to genetic variance that creates phenotypic variation in a

population. We can further model and estimate how much phenotypic

variance could exist by genetic drift alone and how much phenotypic

variance could exist given observed genetic differentiation in trait

associated SNPs. This would allow us to see how much genetic

variation could contribute to phenotypic variance in the most favor-

able scenario possible for the hereditarian hypothesis and compare

that to actual observed phenotypic variation. This analysis would

simultaneously demonstrate the need for natural selection for the

hereditarian hypothesis to be tenable, and test the ability of the

hereditarian hypothesis to explain phenotypic difference in the most

favorable of cases.

To estimate what phenotypic Fst would look like if all among-

group differences were genetic, divergence was exclusively attribut-

able to random genetic drift, and no GxE or GxG existed, I use the

approach developed by Relethford and Blangero (1990) and

Relethford et al. (1997). I also use the country-level IQ data used by

Piffer (2015) that match the 1000 genome populations that constitute

the AFR and EUR superpopulations. While these National IQ data set

have come under harsh criticism recently (Ebbesen, 2020), they are

used here because of their common use among hereditarians, for

example, Piffer (2015). By using their chosen data the strongest possi-

ble version of the hereditarian hypothesis is tested.

We can define the divergence of the means of populations (μi)

from the grand phenotypic mean of all populations (μt) as:

cij = μi−μtð Þ μj−μt
� � ð1Þ

If environmental deviation is 0 and all differences between group

means is due to genetic effects, the average of all elements cii

(σ2B =
Pk

i=1wicii , where wi is the weight of population i) is our estimate

of among population phenotypic variance.

An estimate of Fst can be derived by taking the proportion of total

variance attributable to variance in genetic effects. To do this we need

to have an estimate of the average within population additive genetic

variance (σ2A), which can be calculated by multiplying phenotypic vari-

ance (σ2P) by narrow sense heritability (h2). For narrow sense heritabil-

ity estimates, I use 0.35, based on several family based analyses

(Chipuer et al., 1990; Cloninger et al., 1979; Devlin et al., 1997;

Loehlin, 1978; Rao et al., 1982), and 0.5, based Polderman and

Benyamin (2015)) and Hill and Arslan (2018). It should be noted these

estimates are higher than most genomic-based estimates of heritabil-

ity and are likely upwardly biased (Holland et al., 2020; Morris

et al., 2020; Young et al., 2018) so I also use 0.15 based on Young

et al. (2018) and Holland et al. (2020). Using these heritability esti-

mates and the standard deviation of IQ scores, we can then estimate

Fst as:

FST =

Pk
i=1wiicii

2σ2A +
Pk

i=1wiicii
ð2Þ

This value represents the expected proportion of genetic variance

that accounts for the observed phenotypic variance across these

populations.

We can also estimates the amount of between group genetic vari-

ance of cognitive performance related SNPs with the Fst estimates

calculated from Lee et al. (2018) using a rearranged version of

Equation (2):
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σ2B =
2FSTσ2Ph

2

1−FST
ð3Þ

When we divide the genetic variance of cognitive performance

related SNPs by the observed variance in IQ between populations, we

get the maximum proportion of between group IQ variance that can

be explained by genetic variance between populations. Furthermore,

we can estimate the expected value of the absolute differences that is

attributable to genetic differences between groups, under the

assumption of normality, with Equation (4):

E x−yj j½ �=2σB*
ffiffiffi
2
π

r
ð4Þ

It is important to emphasize that this is a rough calculation that

fails to include basic statistical elements like bias corrections or uncer-

tainty measures. It also relies on unrealistic assumptions that variance

among populations is only attributable to additive genetic effects, that

the polygenic effect of these genotypes are not affected by GxG

(epistasis) or GxE (gene–environment interaction), and effect sizes will

be similar in different populations. These assumptions are unlikely to

hold in reality, but violations of these assumptions will tend to over-

estimate genetic contributions and underestimate environmental con-

tributions. Given the violations of these assumptions, these estimates

are best viewed as a rough upper bound rather than a precise value of

the genetic contribution to IQ differences under neutrality.

3 | RESULTS

3.1 | Polygenic selection

I sought to test for divergent polygenic selection using an method

similar to that employed by Berg and Coop (2014), which should have

high power to detect polygenic selection with a low false-positive

rate, provided GWAS effect sizes are free from systematic biases

(Berg & Harpak, 2019). The squared difference of polygenic scores

computed from the 685 reported genome-wide significant GWAS

with between-family effect sizes from Lee et al. (2018) was 0.068

(raw difference of −0.261), with the African PGS equal to −0.99, and

the European PGS equal to 0.161. I observed only one random poly-

genic score that exceeded this observed squared difference

(Figure 2a). When within-family effect sizes were used, the squared

difference in PGS was attenuated nearly 95% to 0.0027 (raw differ-

ence of −0.052). When compared with the empirical null distribution,

43.2% of randomly generated polygenic scores had greater than or

equal squared polygenic score differences, yielding a nonsignificant

empirical p-value of 0.432 (Figure 2b).

3.2 | Fst differentiation

It is possible that some biases still remain in polygenic scores that arti-

ficially inflate the gap between Africans and Europeans. I next use a

F IGURE 2 Squared polygenic score differences between African and European populations for Lead SNPs based on (a) between family effect
sizes, (b) within-family effect sizes with controls for derived allele frequency and LD score reported by Lee et al. (2018). The black line represents
the observed squared PGS difference and the histograms represent an empirical null distribution from random shuffling of signs of effect sizes for
10,000 permutations. p value is proportion of empirical null distribution greater than or equal to observed squared PGS difference, ΔPGS

represents raw PGS difference, negative values indicate PGSAFR < PGSEUR. Figure generated in R 3.6.3 with ggplot2 (Wickham, 2016)
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method based solely on genetic differentiation at trait associated

SNPs, which is free of potential systematic effect size biases, to deter-

mine how genetically-differentiated variants associated with cognitive

performance and educational attainment are compared with matched

sets of non-associated variants. This method not only shows the mag-

nitude of genetic differences in populations, but also serves as an

additional test for divergent natural selection (Guo et al., 2018). Based

on simulations, Guo et al. (2018) reported maximum power to detect

selection with a clumping p-value threshold of 5 × 10−6, I highlight

results using that threshold.

The mean Fst of the 1259 independent educational attainment

associated SNPs was 0.111, slightly below the mean of the empirical

null distribution, which was 0.118. Results from the two-sided one

sample z-test yielded a p-value of 0.043, rejecting the null hypothesis

that the educational attainment GWAS SNPs mean Fst is not different

from the mean of the null distribution, suggesting that the EA Fst was

significantly smaller than Fst of the control SNPs (Figure 3a). For cog-

nitive performance, the mean Fst for the 602 SNPs was 0.112, slightly

lower than the null distribution mean of 0.119. The results of the one

sample z-test yielded a p-value of 0.164, failing to reject the null

hypothesis that the cognitive performance GWAS SNPs mean Fst is

not different from the mean of the null distribution (Figure 3b).

3.3 | Predicted phenotypic differences based on
trait associated SNP Fst

The previous analysis provides an opportunity to compare variance of

trait-associated SNPs to phenotypic data on IQ scores at the national

level. By doing so, we estimate the maximum genetic and minimum

environmental contribution to among group variance in IQ. We also

provide an estimate for how much intergroup variance could be pro-

duced by genetic drift alone. Assumptions involved in this analysis

typically overestimate genetic contribution, making these estimates

an upper bound. These estimates are possible because we would

expect the Fst value estimated from GWAS identified SNPs to be

equal to the phenotypic variance if all among-group variation is due to

additive genetic effects. Using the country-level IQ results used by

Piffer (2015), the African group mean IQ is 68.4 and the European

group mean IQ is 99.2, a pairwise difference of 30.8. This gives us an

among-group variance of 327.16 IQ points2. From Equation (2) we get

an estimated phenotypic Fst of 0.60, using h2 = 0.35; and 0.51, using

h2 = 0.5. Both of these estimates are much larger than the 0.111 esti-

mated from the Lee et al. (2018) cognitive performance GWAS SNPs.

The cognitive performance GWAS SNP Fst and Equation (3) yields

an estimated among group variance due to genetic effects of 8.5 IQ

points2 using h2 = 0.15, 19.9 IQ points2 using h2 = 0.35; and 28.4 IQ

points2 using h2 = 0.5. Dividing the phenotypic among-group variance

and the among-group variance due to genetic effects shows that

assuming h2 = 0.15, a maximum of 3.6% of variance in IQ between

Africans and Europeans is attributable to additive genetic variance, a

maximum of 8.4% of the variance in IQ is attributable to additive

genetic variance at h2 = 0.35, and a maximum of 12% of the variance in

IQ at h2 = 0.5. This indicates that well over 85% of IQ variance is envi-

ronmental. Additional Fst values from Lee et al. (2018) lead SNPs, edu-

cational attainment SNPs from Lee et al. (2018), and lead SNPs for

intelligence from Hill and Marioni (2019) are used to calculate this esti-

mate in Table 1. Finally, using Equation (4), the expected genetic differ-

ences from these estimates is, at most, 4.7–8.5 IQ points and could

result in higher scores in either Europe or Africa with equal likelihood.

F IGURE 3 Mean Fst values of the associated SNPs in 1000G populations against null distribution for (a) educational attainment and
(b) cognitive ability. The black line represents the mean Fst of the trait-associated SNPs clumped at p < 5 × 10−6. The histogram represents the
distribution of mean Fst of control SNPs. Empirical p-values reported in the figure. Figure generated in R 3.6.3 with ggplot2 (Wickham, 2016)
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4 | DISCUSSION

Before further discussion of the results, several important limitations

should be made clear. First, the low genetic and phenotypic variance

explained by lead SNPs and the lower sample size of within-family

analyses reduces the power for both tests of polygenic selection

(CP and EA). While the results presented here are more consistent

with neutral evolution rather than divergent natural selection, it is not

possible to rule out that data sets with more power could present dif-

ferent results. Additionally, although within-family effect sizes are rec-

ommended over between-family effect sizes, if the within-family

effect sizes are re-estimated for SNPs ascertained by a between-

family GWAS, there is still likely to be some level of confounding from

population structure (Cox et al., 2019; Zaidi & Mathieson, 2020). Sec-

ond, I am not able to account for the complete gap in scores and

attainment between groups without full coverage of genetic variation

that contributes to group differences. Analyses presented here only

partially account for the gap in scores, or make assumptions that the

unobserved genetic variants will have similar distribution to the

observed genetic variants. Third, the effect sizes used here were esti-

mated for European samples from this meta-analysis and then applied

to the independent and more diverse 1000 Genomes Projects sam-

ples, which have no corresponding phenotype data. Finally, without

environmental measurements and corresponding phenotype data for

the 1000 Genomes Project samples, it is not possible to test for gene-

by-environment interactions or gene-by-gene interactions. Despite

these limitations, this study uses the best current data and methods

to test the hereditarian hypothesis using frameworks that have been

successful for analyzing traits such as human height (Chen &

Chiang, 2020; Cox et al., 2019).

4.1 | No evidence of divergent natural selection
between Africans and Europeans

Claims of natural selection have been a centerpiece of hereditarian

explanations of the Black–White IQ gap, likely because selection pro-

vides an intuitive answer to why alleles might systematically differ

between races. Rushton (2000) and Lynn (2006) put natural selection

at the core of their conjecture about why genetic differences might

exist between White and Black populations. However, theoretical and

empirical support for Rushton's claims have been called into question

(Gorey & Cryns, 1995; Cernovsky & Litman, 1993; Cernovsky, 1990;

Graves, 2002; Zeitsch and Zietsch & Sidari, 2019). Critics were also

quick to point out that Lynn's analyses had a deeply flawed sampling

from Africa, resulting at least in a bias against African countries and it

showed signs of measurement bias from the IQ tests themselves

(Wicherts et al., 2010). The evolutionary reasoning has also been cri-

tiqued by research that casts doubt on the validity of the “Cold Win-

ters theory” (MacEachern, 2006; Pesta & Poznanski, 2014; Wicherts

et al., 2010). Continuing this legacy of evolutionary explanations for

racial theories, recent genomic analyses (Piffer, 2015, 2019) claim to

provide strong genetic evidence in support of natural selection using

polygenic scores derived from GWAS in European populations.

Here, I provide independent lines of evidence that genetic differ-

ences at variants associated with EA and CP are consistent with neu-

tral evolution instead of divergent positive selection. First, the fact

that education-and-cognitive-performance-associated alleles do not

show more genetic differentiation than control SNPs that are not

associated with these traits is demonstrated. Second, I test for poly-

genic selection using polygenic scores computed from within-family

effect sizes that minimize the confounding biases mentioned above

(Berg & Harpak, 2019; Sohail & Maier, 2019) and did not find a signal

of divergent positive selection. Although there is more noise in

within-family effect size estimates, Cox et al. (2019) were able to

detect signals of polygenic selection for height in a sample of ancient

genomes using within-family effect sizes and between-family effect

sizes, which suggests that despite the greater noise in within-family

estimates, they are still capable of detecting polygenic selection. Addi-

tionally, the results presented here build upon the failure of Guo

et al. (2018) to find significant genetic differentiation of a different set

of education-associated SNPs compared with control SNPs, and the

failure of Racimo et al. (2018) to find evidence of divergent selection

for educational-attainment-associated SNPs between African and

European populations.

The negative results presented here may differ from Piffer (2015,

2019) because the latter potentially suffer from issues caused by

applying between-family polygenic scores across ancestry groups, in

particular applying European polygenic scores to African populations

(Rosenberg et al.,2019; Novembre & Barton, 2018; Lawson

TABLE 1 Estimated proportion of global IQ variance attributable to additive genetic variation using different calculated Fst estimations and
heritability estimates from the literature

Variance attributable to additive genetic variation

h2=0.15 h2=0.35 h2=0.5

1301 clumped EA SNPs p<5 × 10−6 (Fst = 0.111) 3.60% 8.30% 12.00%

627 clumped cognitive performance SNPs

p<5 × 10−6 (Fst=0.112)

3.60% 8.40% 12.00%

1021 lead SNPs from Lee et al., 2018 (Fst=0.121) 3.90% 9.10% 13.10%

546 lead SNPs from Hill & Marioni, 2019

(Fst= 0.126)

4.10% 9.60% 14.00%
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et al., 2019; Haworth et al., 2019; Freese et al., 2019). One reason for

this is that the scores might be biased by a variety of factors, including

the nonrandom ways that society is geographically structured (Freese

et al., 2019; Haworth et al., 2019; Lawson et al., 2019; Novembre &

Barton, 2018; Rosenberg et al., 2019). For instance, Black people in

the US, for reasons unrelated to genetics, live in areas with poorer air

quality and more exposure to environmental toxins (Manduca &

Sampson, 2019). These between-family polygenic scores are also

known to be biased by the nonrandom ways that people choose their

spouse/partner (assortative mating; Morris et al., 2020); the ways that

genes interact with different environments (gene–environment inter-

action; Cheesman et al., 2020; Selzam & Ritchie, 2019; Mostafavi

et al., 2020); or differences in genetic features that genome-wide

association studies rely on, which create the illusion of systematic dif-

ferences between African and non-African populations (linkage dis-

equilibrium, genetic drift, epistasis, and ascertainment bias;

Coop, 2019; Martin & Gignoux, 2017; Kim et al., 2018). These kinds

of biases have previously led to improper inference of natural selec-

tion in even closely related European populations (Berg &

Harpak, 2019; Sohail, 2019).

Another source of concern is inflation of polygenic scores'

explained variance from indirect genetic effects (Ashbrook

et al., 2015), also called genetic nurture (Kong & Thorleifsson, 2018).

This aspect of polygenic scores appears to be related to features of

the home and prenatal environment of parents who carry a genetic

signal that is not passed down directly to the offspring (Armstrong-

Carter et al., 2020; Lee et al., 2018; Rosenberg et al., 2019; Selzam &

Ritchie, 2019). While these genetic nurture effects correlate with edu-

cational attainment, they are not directly passed onto offspring and so

do not represent direct genetic effects and will not necessarily pro-

duce the same effects across diverse populations.

The substantial attenuation of the signal of polygenic selection

when using within-family effect sizes compared with between-family

effect sizes suggests that results computed by Piffer (2015, 2019) are

not due to signals of polygenic selection, but to biases in applying

polygenic scores that have been computed with between-family

effect sizes across ancestry groups and a failure to employ a formal

test for polygenic selection. Other concerns with these studies are the

inclusion of data from Richard Lynn (Lynn & Vanhanen, 2006), which

introduces another source of systematic bias in the analysis (Wicherts

et al., 2010; Wicherts et al., 2010a). Furthermore, the substantial

attenuation of polygenic scores when using within-family effect sizes

and accounting for ancestral/derived allele frequency biases in

European GWAS SNPs shown here and elsewhere (Morris

et al., 2020; Selzam & Ritchie, 2019), suggests that the key results of

the education PGS analysis performed in Lasker et al. (2019) may be

attributable to systematic bias in between-family effect sizes in addi-

tion to issues with control variables.

Critics may argue that the observed attenuation is achieved by

eliminating genuine genetic effects, regardless of whether they are

indirect or direct. One reason we may not want to consider indirect

genetic effects is that it is not clear that they act in the same way

between populations, especially between countries with very

different levels of economic development. Additionally, it is important

to remember that proponents of the genetic hypothesis, typically fol-

lowing Jensen's arguments, claim that the genetic differences are

largely fixed, and that environmental interventions are unlikely to

close the gap. Indirect genetic effects, however, are often more ame-

nable to environmental interventions (Gage et al., 2016). This is bol-

stered by the observation that much of the effect-size disparity

between within- and between-family polygenic scores of cognitive

traits is related to socioeconomic status, which can be changed readily

through social policies (Cheesman et al., 2020; Morris et al., 2020).

Should proponents of the genetic hypothesis argue that indirect

genetic effects nonetheless support their claims, note that such a pre-

mise would be inconsistent with maintaining any claims of the fixed-

ness of the phenotypic gap, which is a centerpiece of arguments made

by Jensen (1969b); Jensen, 1985), Rushton (1990), and Lynn and

Vanhanen (2006). Given the lack of evidence for selection demon-

strated here, it is imperative to revise previous speculation about the

contribution of natural selection to the global variation in cognitive

traits (Winegard et al., 2017; Winegard et al., 2020).

4.2 | The magnitude of the genetic contribution to
Black–White differences is predicted to be small

One of the central claims of the hereditarian hypothesis, epitomized

by Jensen's work (Jensen, 1969b), is that genetic differences cause a

substantial portion of the gap in IQ between Black and White

populations and the gap cannot be closed by environmental interven-

tion. The biometric techniques employed by Jensen (1969a) to sup-

port the hereditarian hypothesis have been critiqued on several

fronts, most notably that heritability estimates provide little insight

into the causes of between group differences, that heritability esti-

mates do not inform on the efficacy of environmental interventions,

and that heritability is likely inflated due to violations of model

assumptions when applied to humans (Kempthorne, 1978). Despite

these strong criticisms, direct genetic evidence for or against Jensen's

arguments have failed to materialize, bar a recent genomic analysis

claiming to provide direct evidence in support of the genetic hypothe-

sis (Jensen, 1969a; Lasker et al., 2019).

Contra the genetic hypothesis, the results provided here, using

evolutionary genetic techniques, are consistent with genetic differ-

ences in variants associated with cognitive performance contributing

an insignificant portion of the African-European IQ gap. When the

between group variance attributable to trait-associated SNPs is com-

pared with the observed phenotypic between-group variance, over

85% of the between-group variance in IQ is not attributable to addi-

tive genetic effects, where at most 4.7–8.5 IQ points could be attrib-

uted to such genetic effects. Importantly, this model assumes that the

genetic contribution is completely additive, and no gene–environment

interactions exist even though both gene–gene (GxG) and gene–

environment (GxE) interactions can influence traits. This means that

the manner in which a genotype relates to a phenotype, and the mag-

nitude of the genetic contribution, could differ between populations
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with different allele frequencies or environments. If the contributions

of SNPs can differ between populations due to GxG and GxE, then

the effects of a variant on a trait can vary in direction and magnitude

within and between populations. This variability could obscure the

evolutionary trajectories of populations and lead to erroneous conclu-

sions about patterns of selection and genetic contribution to pheno-

typic differences if GxG and/or GxE are not accounted for

(Coop, 2019; Rosenberg et al., 2019); as in the case of the Alzheimer

linked APOE variants (Rajabli & Feliciano, 2018; Tang et al., 1998).

Hence, the mean-expected-difference provided here is likely an

overestimate and should be thought of as the maximum mean differ-

ence attributable to genetic variation due to genetic drift. It is also

important to note that the direction of the mean difference could

favor Africans or Europeans with equal likelihood. These genetic esti-

mates fall far short of the observed 30.8 IQ gap between African and

European populations. Whatever value the genetic contribution takes,

it is important to remember that the effects of gene-by-gene and

gene-by-environment interactions will likely reduce this value in real-

ity because the interactive nature of these traits can overwhelm the

contribution of genetic drift. Furthermore, there is no reason to

believe the genetic contribution to trait differences is immutable to

environmental interventions given the known presence of gene–

environment interplay in educational attainment.

Even in the scenarios most favorable to the genetic hypothesis,

these results are far less than the claimed contribution of hereditar-

ians like Jensen, Rushton, and Lynn. Considering that the assumptions

of this model violate core principles of modern population genetics

(such as no gene–environment interplay, gene–gene interactions, and

similar allelic effect across populations), there is little reason to expect

the genetic contribution to be this large in reality. In fact, it is still pos-

sible that the genetic contribution to the IQ gap is zero. Above all,

these results are consistent with genetic differences having an insig-

nificant effect on the IQ and attainment gap.

4.3 | Where next for the debate on group
differences

It might be tempting for supporters of the genetic hypothesis and

some neutral readers to think that a positive result from these ana-

lyses would be strong support for the genetic hypothesis. I would cau-

tion against such a conclusion. As discussed above, these analyses use

unsound assumptions about the additivity of genetic effects and the

similarity of their behavior between populations. These assumptions

are known to be false—for example, in a complex trait like life span,

extensive context-dependent allelic effects across several environ-

ments and between sexes has been demonstrated in Drosophila mela-

nogaster (Huang et al., 2020). Similarly, there is evidence of context

dependence of polygenic scores in humans of the same ancestry

group, especially for traits like educational attainment (Mostafavi

et al., 2020). These model violations are most likely to lead to over-

estimation of the additive genetic contribution to phenotypic vari-

ance. Consequently, should subsequent analyses find larger values,

these should not be taken as definitive proof that genetic contribu-

tions are that large. Extensive follow-up of how model violations

impact estimation would be required to make a determination of any

potential genetic contribution. Furthermore such evidence would

require extensive functional validation (Flint & Ideker, 2019;

Gallagher & Chen-Plotkin, 2018) to demonstrate that causal variants

exist in both populations and have similar effects in each, though evi-

dence of such kind would be consistent with the genetic hypothesis

and stronger than current evidence. However, without the ability to

rule out effects of appropriate environmental interventions, this

would still be insufficient to show a fixed genetic difference between

populations.

Furthermore, although future studies may claim to show natural

selection has acted on these populations, caution is needed in inter-

preting the impact that selected variants may have on phenotypic dif-

ferences. Others have noted the difficulty of moving from past

selection on variants associated with a trait to substantial genetic con-

tribution to group differences without additional analyses (Harpak &

Przeworski, 2020; Rosenberg et al., 2019). The difficulty in dis-

tinguishing between divergent positive selection and the stabilizing

selection of adjusting to a new environment while leaving the trait

optimally unchanged presents another reason for caution in interpre-

tation (Harpak & Przeworski, 2020). The consequence of this context

dependency and the ambiguous implications of putative positive

results is that providing strong support for the genetic hypothesis is

exceedingly difficult, and perhaps impossible without the direct exper-

imentation ordinarily permissible in studies in models systems or in

agricultural settings. The ability to do massive reciprocal transplant

experiments in plants with replicated genotypes and tight control over

the environment is extremely powerful in plant settings (Lowry

et al., 2019; Price et al., 2018). In humans, however, a conclusive

experiment would need to control for prenatal and early developmen-

tal heterogeneity (the subtle and pervasive psychosocial and social

effects that contribute to group differences), in order to compare per-

formance in the same or across a range of environments to overcome

limitations of observational studies. Such an experiment is of course

not moral or ethical. This major hindrance means that while the ana-

lyses performed in this study may not find evidence supporting the

hereditarian hypothesis, positive results from similar studies are not

nearly so dispositive.

5 | CONCLUSION

This analysis employs the current most reliable methods given con-

cerns over cross-population polygenic score analysis. It demonstrates

that patterns of genetic differences between African and European

populations in the 1000 Genomes Project data set is consistent with

neutral evolution and insignificant genetic contribution to the Black–

White IQ gap. In other words, the patterns observed in this study can

be explained without appealing to the core tenets of the hereditarian

hypothesis. Claims made by proponents of the hereditarian hypothe-

sis and recent analyses using polygenic scores (Lasker et al., 2019;
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Piffer, 2019) are stronger than what current evidence shows. Given

the results presented here, a minimal, insufficiently dispositive

requirement for verifying the hereditarian hypothesis is not met.

The claims for large, immutable group differences in intelligence

and educational attainment are not supported in the least by these

analyses.
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