
Spoiled Onions:
Exposing Malicious Tor Exit Relays�

Philipp Winter1, Richard Köwer3, Martin Mulazzani2, Markus Huber2,
Sebastian Schrittwieser2, Stefan Lindskog1, and Edgar Weippl2

1 Karlstad University, Sweden
2 SBA Research, Austria

3 FH Campus Wien, Austria

Abstract. Tor exit relays are operated by volunteers and together push
more than 1 GiB/s of network traffic. By design, these volunteers are able
to inspect and modify the anonymized network traffic. In this paper, we
seek to expose such malicious exit relays and document their actions.
First, we monitored the Tor network after developing two fast and mod-
ular exit relay scanners—one for credential sniffing and one for active
MitM attacks. We implemented several scanning modules for detecting
common attacks and used them to probe all exit relays over a period of
several months. We discovered numerous malicious exit relays engaging
in a multitude of different attacks. To reduce the attack surface users are
exposed to, we patched Torbutton, an existing browser extension and
part of the Tor Browser Bundle, to fetch and compare suspicious X.509
certificates over independent Tor circuits. Our work makes it possible to
continuously and systematically monitor Tor exit relays. We are able to
detect and thwart many man-in-the-middle attacks, thereby making the
network safer for its users. All our source code is available under a free
license.

1 Introduction

As of January 2014, nearly 1,000 exit relays [30] distributed all around the globe
serve as part of the Tor anonymity network [10]. As illustrated in Fig. 1, the
purpose of these relays is to establish a bridge between the Tor network and the
“open” Internet. A user’s Tor circuits—which are basically encrypted tunnels—
are terminated at exit relays and from there, the user’s traffic proceeds to travel
over the open Internet to its final destination. Since exit relays can see traffic
as it is sent by clients, Tor users are advised to use end-to-end encryption. By
design, exit relays act as a “man-in-the-middle” (MitM) in between a user and
her destination. This renders it possible for exit relay operators to run various
MitM attacks such as traffic sniffing, DNS poisoning, and SSL-based attacks
� This work is the result of merging two PETS submissions. The original titles and

authors were: “Spoiled Onions: Exposing Malicious Tor Exit Relays” by Winter and
Lindskog, and “HoneyConnector: Active Sniffer Baiting on Tor” by Köwer, Mulaz-
zani, Huber, Schrittwieser, and Weippl.

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 304–331, 2014.

Spoiled Onions: Exposing Malicious Tor Exit Relays 305

such as HTTPS MitM and sslstrip [22]. An additional benefit for attackers is
that exit relays can be set up quickly and anonymously, thus making it very dif-
ficult to trace attacks back to their origin. While it is possible for relay operators
to specify contact information such as an e-mail address,1 this is optional and as
of January 2014, only 56% out of all 4,962 relays publish contact information.
Even fewer relays publish valid contact information.

Tor client

Destination

Exit relay

Entry guard

Middle relay

Tor
network

Encrypted by Tor
Not encrypted by Tor

Fig. 1. The structure of a three-hop Tor
circuit. Exit relays constitute the bridge be-
tween encrypted circuits and the open In-
ternet. As a result, exit relay operators can
see—and tamper with—anonymized traffic
of users.

To thwart a number of pop-
ular attacks, TorBrowser [26]—the
Tor Project’s modified version of
Firefox—ships with the two exten-
sions HTTPS-Everywhere [11] and
NoScript [17]. While the former con-
tains rules to rewrite HTTP to
HTTPS traffic, NoScript seeks to pre-
vent many script-based attacks. How-
ever, there is little clients can do in the
face of web sites implementing poor
security such as the lack of site-wide
TLS, session cookies being sent in the
clear, or using weak cipher suites in
their web server configuration. Often,
such bad practice enables attackers to
spy on users’ traffic or, even worse,
hijack accounts. Besides, TorBrowser
cannot protect against attacks targeting non-HTTP(S) protocols such as SSH.
All these attacks are not just of theoretical nature. In 2007, a security researcher
published 100 POP3 credentials he captured by sniffing traffic on a set of exit
relays under his control [25]; supposedly to show the need for end-to-end encryp-
tion when using Tor. Section 2.1 discusses additional attacks which were found
in the wild.

The main contributions of this paper are:

– We discuss the design and implementation of exitmap, a flexible and fast exit
relay scanner which is able to detect several popular MitM attacks.

– We introduce HoneyConnector, a framework to detect sniffing Tor exit relays
based on FTP and IMAP bait connections.

– Using exitmap and HoneyConnector, we monitored the Tor network over a
period of multiple months in two independent studies. In total, we identified
65 exit relays that conducted MitM attacks or reused sniffed credentials.

– To detect MitM attacks against HTTPS, we propose the design and pro-
totype of a patch for the Torbutton browser extension which fetches and
compares X.509 certificates over diverging Tor circuits.

1 Contact information is useful to get in touch with relay operators, e.g., if their relay
is not configured correctly.

306 P. Winter et al.

The remainder of this paper is structured as follows: Section 2 gives a brief
background on how misbehaving relays are handled in the Tor network and gives
an overview of related work. Section 3 discusses the design and implementation
of exitmap and HoneyConnector, our scanners to detect malicious relays. We
ran both frameworks for multiple months consecutively and present the attacks
we discovered in Section 4 and discuss them in Section 5. Section 6 presents
countermeasures to protect against HTTPS MitM attacks. Finally, Section 7
concludes this paper.

2 Background

The Tor Project has a way to prevent clients from selecting bad exit relays as
the last hop in their three-hop circuits. After a suspected relay is communicated
to the project, the reported attack is first reproduced. If the attack can be
verified, a subset of two (out of all nine) directory authority operators manually
blacklist the relay using Tor’s AuthDirBadExit configuration option. Every hour,
the directory authorities vote on the network consensus which is a signed list of
all relays, the network is comprised of. Among other information, the consensus
includes the BadExit flag. As long as the majority of the authorities responsible
for the BadExit flag—i.e., two out of two—agree on the flag being set for a
particular relay, the next network consensus will label the respective relay as
BadExit. After the consensus was signed by a sufficient number of directory
authorities, it propagates and is eventually used by all Tor clients after 24 hours
have passed. From then on, clients will no longer select relays labeled as BadExit
as the last hop in their circuits. Note that this does not mean that BadExit
relays become effectively useless. They keep getting selected by clients as their
entry guards and middle relays. Most of the malicious relays we discovered were
assigned the BadExit flag after we reported them to the Tor Project. The relays
which escaped the BadExit flag were either merely misconfigured or already
offline when we reported them to the Tor Project.

Note that the BadExit flag is not only given to relays which are believed to be
malicious. It is also assigned to relays which are misconfigured or are otherwise
unable to fulfill their duty of providing unfiltered Internet access. A frequent
cause of misconfiguration is the use of third-party DNS resolvers which block
certain web site categories such as “pornography” or “proxy/anonymizer”. Apart
from the BadExit flag, directory authorities can blacklist relays by disabling its
Valid flag which prevents clients from selecting the relay for any hop in its circuit.
This option can be useful to disable relays running a broken version of Tor or
are suspected to engage in end-to-end correlation attacks.

2.1 Related Work

In 2006, Perry began developing the framework “Snakes on a Tor” (SoaT) [31].
SoaT is a Tor network scanner whose purpose is to detect misbehaving exit relays.
Similar to the less advanced torscanner [35], decoy content is first fetched over

Spoiled Onions: Exposing Malicious Tor Exit Relays 307

Tor, then over a direct Internet connection, and finally compared. Over time,
SoaT was extended with support for HTTP, HTTPS, SSH and several other
protocols. However, SoaT is no longer maintained and makes use of deprecated
libraries. Compared to SoaT, exitmap is more flexible and significantly faster.
Similar to SoaT, Marlinspike implemented tortunnel [23] which exposes a local
SOCKS interface. Incoming data is then sent over exit relays using one-hop
circuits. By default, exitmap does not use one-hop circuits as that could be
detected by attackers which could then act honestly.

A first academic attempt to detect malicious exit relays was made in 2008 by
McCoy et al. [24]. The authors established decoy connections to servers under
their control. They further controlled the authoritative DNS server responsible
for the decoy hosts’ IP addresses. As long as a malicious exit relay sniffed network
traffic with reverse DNS lookups being enabled, the authors were able to map
reverse lookups to exit relays by monitoring the authoritative DNS server’s traf-
fic. By exploiting that side channel, McCoy et al. were able to find one exit relay
sniffing POP3 traffic at port 110. However, attackers can easily avoid that side
channel by disabling reverse lookups. The popular tool tcpdump implements the
command line switch -n for that exact purpose. In 2011, Chakravarty et al. [5]
attempted to detect sniffing exit relays by systematically transmitting decoy
credentials over all active exit relays. Over a period of ten months, the authors
uncovered ten relays engaging in traffic snooping. Chakravarty et al. could ver-
ify that the operators were sniffing exit traffic because they were later found to
have logged in using the snooped credentials. While the work of Chakravarty et
al. represents an important first step towards monitoring the Tor network, their
technique only focused on SMTP and IMAP. At the time of our writing, only
20 out of all ∼1,000 exit relays allow connections to port 25. Instead, Honey-
Connector focuses on FTP and IMAP. Also, similar to McCoy et al., the authors
only discussed traffic snooping attacks which are passive. Active attacks remain
entirely unexplored until today.

The Tor Project used to maintain a web page documenting misbehaving relays
which were assigned the BadExit flag [18]. As of January 2014, this page lists 35
exit relays which were discovered in between April 2010 and July 2013. Note that
not all of these relays engaged in attacks; almost half of them ran misconfigured
anti virus scanners or used broken exit policies.2 Since Chakravarty et al., no
systematic study to spot malicious exit relays was conducted. Only some isolated
anecdotal evidence emerged [34]. Our work is the first to give a comprehensive
overview of active attacks. We further publish our code under a free license.3 By
doing so, we enable and encourage continuous and crowdsourced measurements
rather than one-time scans.

2 An exit relay’s exit policy determines to which addresses and ports the relay forwards
traffic to. Often, relay operators choose to not forward traffic to well-known file
sharing ports in order to avoid copyright infringement.

3 The code is available at http://www.cs.kau.se/philwint/spoiled_onions.

http://www.cs.kau.se/philwint/spoiled_onions

308 P. Winter et al.

3 Monitoring Tor Exit Relays

We now discuss the design and implementation of exitmap as well as Honey-
Connector which are both lightweight Python-based exit relay scanners. Their
purpose is to systematically create circuits to exit relays which are then probed
by modules which establish decoy connections to various destinations. While ex-
itmap focuses on active attacks, HoneyConnector seeks to uncover traffic snoop-
ing. We aim to provoke exit relays to tamper with or snoop on our connections,
thereby revealing their malicious intent. By doing so, we seek to discover and
remove all “spoiled onions” in the Tor network. Our adversary model is thus
a relay operator who exploits the fact that traffic can be modified or might be
unencrypted once it leaves the Tor network. We will also show that our scanners’
modular design enables quick prototyping of new scanning modules and exitmap’s
event-driven architecture makes it possible to scan all exit relays within a matter
of only seconds while at the same time sparing their resources.

3.1 The Design of exitmap

exitmap is an active scanner that is designed to detect MitM attacks of various
kinds. The schematic design of exitmap is illustrated in Fig. 2. Our tool is run
on a single machine and requires the Python library Stem [32]. Stem implements
the Tor control protocol [33] and we use it to initiate and close circuits, attach
streams to circuits as well as to parse the network consensus. Upon starting
exitmap, it first invokes a local Tor process which proceeds by fetching the newest
network consensus in order to know which exit relays are currently online.

Exit
relays

Local Tor

exitmap

Stemprobing
module

control
port

SOCKS
port

Entry
relay

Decoy
destination

Fig. 2. The design of exitmap. Our scanner invokes
a Tor process and uses the library Stem to control
it. Using Stem, circuits are created “manually” and
attached to decoy connections which are initiated by
our probing modules.

Next, our tool is fed with
a set of exit relays. This set
can consist of a single re-
lay, all exit relays in a given
country, or the set of all
Tor exit relays. Random per-
mutation is then performed
on the set so that repeated
scans do not probe exit re-
lays in the same order. This
is useful while developing
and debugging new scanning
modules as it equally dis-
tributes the load over all
selected exit relays. Once ex-
itmap knows which exit relays
it has to probe, it initiates cir-
cuits which use the respective
exit relays as their last hop.
All circuits are created asynchronously in the background. Once a circuit to
an exit relay is established, Tor informs exitmap about the circuit by sending

Spoiled Onions: Exposing Malicious Tor Exit Relays 309

an asynchronous circuit event over the control connection. Upon receiving the
event, exitmap invokes the desired probing module which then proceeds by estab-
lishing a connection to a decoy destination (see Section 3.1). Tor creates stream
events for new connections to the SOCKS port which are also sent to exitmap.
When a stream event is received, we attach the stream of a probing module to
the respective circuit. Note that stream-to-circuit attaching is typically done by
Tor. In order to have control over this process, our scanner invokes Tor with
the configuration option __LeaveStreamsUnattached which instructs Tor to leave
streams unattached. For performance reasons, Tor builds circuits preemptively,
i.e., a number of circuits are kept ready even if there is no data to be sent yet.
Since we want full control over all circuits, we prevent Tor from creating circuits
preemptively by using the configuration option __DisablePredictedCircuits. ex-
itmap’s probing modules can either be standalone processes or Python modules.
Processes are invoked using the torsocks wrapper [36] which hijacks system calls
such as socket() and connect() in order to redirect them to Tor’s SOCKS port.
We used standalone processes for our HTTPS and SSH modules. In addition,
probing modules can be implemented in Python. To redirect Python’s network-
ing API over Tor’s SOCKS port, we extended the SocksiPy module [13]. We
used Python for our sslstrip, DNS, XMPP, and IMAPS modules.

Performance Hacks. A naive approach to probing exit relays could be a non-
trivial burden to the Tor network; mostly computationally but also in terms
of network throughput. We implemented a number of tweaks in order for our
scanning to be as fast and cheap as possible.

exitmap Destination

Exit relays

Static
relay

Tor
network

"Spoiled" exit
doing MitM

Fig. 3. Instead of establishing a full three-
hop circuit, our scanner is able to use a
static middle relay; preferably operated by
whoever is running our scanner. By doing
so, we concentrate the load on one machine
while making our scanning activity slightly
less stealthy.

First, we expose a configuration op-
tion for avoiding the default of three-
hop circuits. Instead, we only use two
hops as illustrated in Fig. 3. Tor’s mo-
tivation for three hops is anonymity
but since our scanner has no need
for strong anonymity, we only se-
lect a static entry relay—ideally op-
erated by exitmap’s user—which then
directly forwards all traffic to the re-
spective exit relays. We offer no op-
tion to use one-hop circuits as that
would make it possible for exit relays
to isolate scanning connections: A ma-
licious exit relay could decide not to
tamper with a circuit if it originates
from a non-Tor machine. Since we use
a static first hop which is operated by
us, we concentrate most of the scan-
ning load on a single machine which is well-suited to deal with the load. Other
entry and middle relays do not have to “suffer” from exitmap scans.

310 P. Winter et al.

However, note that over time malicious exit relays are able to correlate scans
with relays, thus determining which relays are used for scans. To avoid this
problem, exitmap’s first hop should be changed periodically and we hope that by
crowdsourcing our scanner, isolating middle relays is no longer a viable option
for attackers. Another computational performance tweak can be achieved on
Tor’s authentication layer. At the moment, there are two ways how a circuit
handshake can be conducted; either by using the traditional TAP or the newer
NTor handshake. TAP—short for Tor Authentication Protocol [12]—is based
on Diffie-Hellman key agreement in a multiplicative group. NTor, on the other
hand, uses the more efficient elliptic curve group Curve25519 [2]. A non-trivial
fraction of a relay’s computational load can be traced back to computationally
expensive circuit handshakes. By favoring NTor over TAP, we slightly reduce
the computational load on exit relays. As NTor supersedes TAP and is becoming
more and more popular as Tor clients upgrade, we believe that it is not viable
for attackers to “whitelist” NTor connections.

Scanning Modules. After discussing exitmap’s architecture, we now present
several probing modules we developed in order to be able to detect specific
attacks. When designing a module, it is important to consider its indistinguisha-
bility from genuine Tor clients. As mentioned above, malicious relay operators
could closely inspect exit traffic (e.g., by examining the user agent string of
HTTP requests) and only target connections which appear to be genuine Tor
users.

HTTPS. McCoy et al. [24] showed that HTTP is the most popular protocol in
the Tor network, clearly dominating other protocols such as instant messaging
or e-mail.4 While HTTPS lags behind, it is still widely used and unsurprisingly,
several exit relays were documented to have tampered with HTTPS connec-
tions [18] in the past. We implemented an HTTPS module which fetches a decoy
destination’s X.509 certificate and extracts its fingerprint. This fingerprint is
then compared to the expected fingerprint which is hard-coded in the module.5
If there is a mismatch, an alert is triggered. Originally, we began by fetching
the certificate using the command line utility gnutls-cli. We later extended the
module to send a TLS client hello packet as it is sent by TorBrowser to make
the scan less distinguishable from what a real Tor user would send. Note that an
attacker might become suspicious after observing that a Tor user only fetched
an X.509 certificate without actually browsing the respective web site. However,
at the point in time an attacker would become suspicious, we already have what
we need; namely the X.509 certificate.

4 This is particularly true for connections but not so much for bytes transferred.
5 Note that it is also possible for modules to fetch the certificate over a direct Internet

connection instead of hard-coding the fingerprint.

Spoiled Onions: Exposing Malicious Tor Exit Relays 311

1 function probe(fingerprint, command) {

2
3 ssh_public_key = "11:22:33:44:55:66:77:88:99:00:aa:bb:cc:dd:ee:ff";

4
5 output = command.execute("ssh -v decoy.host.com");

6
7 if (ssh_public_key not in output) {

8 print("Possible MitM attack by " + fingerprint);

9 }

10 }

Fig. 4. Pseudo code illustrating a scanning module which probes SSH. It establishes
an SSH connection and verifies if the fingerprint matches the expected value. If the
observed fingerprint differs, an alert is raised.

XMPP and IMAPS. Analogous to the HTTPS module, these two modules
establish a TLS connection to a decoy destination, extract the server certificate’s
fingerprint, and compare it to the respective hard-coded fingerprint.

sslstrip. Instead of interfering with TLS connections, an attacker can seek
to prevent TLS connections. This is the purpose of the tool sslstrip [22]. The
tool achieves this goal by transparently rewriting HTML documents while on
their way from the server to the client. In particular, it rewrites HTTPS links
to HTTP links. A secure login form pointing to https://login.example.com is
subsequently rewritten to HTTP which causes a user’s browser to submit her
credentials in the clear. While the HTTP Strict Transport Security policy [15]
prevents sslstrip, it is still an effective attack against many large-scale web sites
with Yahoo! being only one of them as of January 2014. From an attacker’s
point of view, the benefit of sslstrip is that it is a comparatively silent attack
because browsers will not show certificate warnings. Vigilant users, however,
might notice the absence of browser-specific TLS indicators such as lock icons.
Our probing module fetches web sites containing HTTPS links over unencrypted
HTTP. Afterwards, the module simply verifies whether the fetched HTML doc-
ument contains the expected HTTPS links or if they were “downgraded” to
HTTP.

SSH. The Tor network is also used to transport SSH traffic. This can easily be
done with the help of tools such as torsocks [36]. Analogous to HTTPS-based
attacks, malicious exit relays could run MitM attacks against SSH. In practice,
this is not as easy as targeting HTTPS given SSH’s “trust on first use” model.
As long as the very first connection to an SSH server was secure, the public key
is then stored by the client and kept as reference for subsequent connections.
As a result, a MitM attack has to target a client’s very first SSH connection.
Nevertheless, this practical problem might not stop attackers from attempting

312 P. Winter et al.

to interfere with SSH connections. Our SSH module—conceptually similar to
the pseudo code shown in Fig. 4—makes use of OpenSSH’s ssh and torsocks to
connect to a decoy server. Again, the server’s key fingerprint is extracted and
compared to the hard-coded fingerprint. However, compared to the HTTPS mod-
ule, it is difficult to achieve indistinguishability over time. After all, a malicious
relay operator could monitor an entire SSH session. If it looks suspicious, e.g.,
it only fetches the public key, or it lasts only one second, the attacker could de-
cide to whitelist the destination in the future. To work around this problem, we
could establish SSH connections to random hosts on the Internet. This, however,
is often considered undesired scanning activity and does not constitute good In-
ternet citizenship. Instead, we again seek to solve this problem by publishing
our source code and encouraging people to crowdsource exitmap scanning. Every
exitmap user is encouraged to use her own SSH server as decoy destination. That
way, we hope to achieve destination diversity without bothering arbitrary SSH
servers on the Internet.

DNS. While the Tor protocol only transports TCP streams, clients can ask
exit relays to resolve DNS records by wrapping domain names in a RELAY_BEGIN

cell [9]. Once a circuit is established, this cell is then sent to the exit relay for
resolution. In the past, some exit relays were found to inadvertently censor DNS
queries, e.g., by using an OpenDNS configuration which blocks certain domain
categories such as “pornography” or “proxy/anonymizer” [18]. Our probing mod-
ule maintains a whitelist of domains together with their corresponding IP ad-
dresses and raises an alert if the DNS A record of a domain name is unexpected.
This approach works well for sites with a known set of IP addresses but large sites
frequently employ a diverse—and sometimes geographically load-balanced—set
of IP addresses which is difficult to enumerate. Our module probes domains in
the categories finance, social networking, political activism, and pornography.

3.2 The Design of HoneyConnector
HoneyConnector is a framework for establishing bait connections over Tor using
unique credentials over FTP and IMAP and detecting their subsequent use to
identify sniffing exit relays. The framework can be divided into several compo-
nents. It consists of the HoneyConnector client which is written in Python, a
copy of the Tor client, the Stem [32] library for controlling Tor connections, and
a backend database for storing our bait credentials and timestamps, as well as
additional exit relay information. The HoneyConnector client is responsible for
creating new credentials, establishing the actual bait connection over the respec-
tive exit relays, and communicating them to the deployed services over a secure
channel for creating the accounts and bait data. Furthermore, HTTPS certifi-
cates are fetched by the client and compared with the real certificates to detect
MitM attacks against HTTPS. Credentials are checked for duplicates prior to
using them, to prevent reusing usernames or passwords. For each protocol—in
our current implementation FTP and IMAP—a virtual machine is used for host-
ing these services, and accessed over the Tor network using bait credentials. This

Spoiled Onions: Exposing Malicious Tor Exit Relays 313

makes it possible to quickly deploy multiple instances for each service. Analo-
gous to exitmap, HoneyConnector uses the library Stem to have control over which
exit relay is selected for a circuit and to check if a given exit relay’s exit policy
allows connections to our bait services. We manually looked for peculiarities in
our bait sessions which could have been used to identify them. Afterwards, we
changed the status messages sent by pyFTPdlib to match those of vsFTPd. It
was not necessary to change the behavior of Dovecot as it is a common mail
server found on GNU/Linux systems. Once a scan is started, the network con-
sensus is downloaded and all exit relays are processed sequentially after random
permutation.

FTP Scanning. Our HoneyConnector client made use of the Python library
ftplib to connect to our bait FTP server. The credentials for the FTP server were
generated by the HoneyConnector client, stored in a database, and then forwarded
to the FTP server over a secure channel. All FTP usernames are generated by
randomly choosing a prefix out of “web”, “user”, “ftp”, “usr”, or two random
letters followed by a random number between 1 and 999 in combination with
a randomly generated password. After sending the credentials, our client waits
for 30 seconds in order to assure that the server had enough time to populate
the FTP user directory. The client then connects over the Tor network to the
FTP server and downloads a random file before closing the connection. After
the connection was closed, the client sends a message directly (i.e., not over Tor)
to the server, instructing it to delete the user from the server. On the server
side we used the pyFTPdlib Python library as it allowed us to modify the source
code for logging plaintext credentials; a feature which was hard to find in other
FTP server software. The concatenation of username and password allowed us
to identify which exit relay sniffed a given pair of credentials.

IMAP Scanning. For implementing our IMAP scan, we used Python’s built-in
library imaplib. On the server side we used Dovecot due to it being a popular
IMAP server and offering the possibility of verbose authentication logging, in-
cluding writing usernames and passwords to a log file. We believe that for sniffers,
IMAP is more interesting than POP3 since messages are kept on the server. As
a result, it is stealthier for an attacker to browse the victim’s e-mails as they
are kept on the server rather than being deleted after downloading them. We
reused password lists from the Honeynet Project [27] instead of generating them
randomly. These passwords mimic real user passwords, and we manually verified
that we do not falsely count regular bruteforce attacks as reconnection (i.e. no
other connection attempts within close time vicinity). We further populated all
mailboxes with dummy e-mails (the exact amount was randomly chosen from
{1..6000}). The e-mails do not need actual content as only the amount of e-mails
in the mailbox is transferred but no content. We designed our IMAP setup anal-
ogous to the FTP setup discussed above; login credentials are first generated
and then sent to the server after their uniqueness was verified. The HoneyCon-
nector client then sleeps for a while to give the server time to populate the newly

314 P. Winter et al.

created mailbox. Subsequently, HoneyConnector simulates an e-mail client check-
ing for new mails. Finally, the client instructs the server to delete the e-mail
account and thereby terminates the bait IMAP connection.

4 Experimental Results

The following two sections present the results we obtained by monitoring all
Tor exit relays over a period of several months. We begin by presenting active
attacks in Section 4.1 which is then followed by sniffing attacks in Section 4.2.

4.1 Detecting MitM Attacks with exitmap

0 10 30 50

0.
0

0.
4

0.
8

Time (seconds)

E
m

pi
ric

al
 C

D
F

●●
●●

●●
●●

●●
●●

●●
●
●●

●●
●●

●
●●

●●
●●

●●
●●

●●
●
●●

●●●●●●●●●● ●●

●

SSH
HTTPS
sslstrip
DNS

Fig. 5. The performance of some of our
probing modules. The DNS module is
slower because it resolves several do-
main names at once. All other modules
can scan at least 98% of all responsive
Tor exit relays under 40 seconds.

Scanning Performance. On September
19th, we ran our first full scan over all
∼950 exit relays which were part of the
Tor network at the time. From then on,
we scanned all exit relays several times a
week. Originally, we began our scans while
only armed with our HTTPS module
but as time passed, we added additional
modules which allowed us to scan for ad-
ditional attacks. In this section, we will
discuss the results we obtained by mon-
itoring the Tor network over a period of
seven months.

exitmap is also useful to measure the
reliability of exit relays. While running
our scans, we observed that 84%–88% of
circuit creations succeeded. The remain-
ing circuits either timed out or were torn
down by the respective exit relay using
a DESTROY cell. The performance of our
probing modules for all responsive exit re-
lays is illustrated in Fig. 5. The ECDF’s x-axis shows the amount of seconds it
takes for a module to finish successfully. The y-axis shows the cumulative fraction
of all exit relays. The diagram shows that all modules are able to scan at least
98% of all responsive Tor exit relays under 50 seconds. Note that it is possible to
artificially slow down exitmap in order to make scans more difficult to detect. At
maximum speed, it would be easier for colluding exit relays to correlate decoy
connections and mark them as possibly coming from exitmap.

Malicious Relays. Table 1 contains all 40 malicious and misconfigured exit
relays we found. We discovered the first two relays “manually” before we had
developed exitmap. All data illustrated in the table was gathered on the day we

Spoiled Onions: Exposing Malicious Tor Exit Relays 315

found the respective attack. It includes the first 4 bytes of the relay’s unique 20-
byte SHA-1 fingerprint, the IPv4 addresses or netblocks the relay was found to
have used over its life time, the advertised bandwidth and the country in which
the relay resided according to MaxMind’s GeoIP lite database. Furthermore, the
relay’s configuration problem or the attack it was running, the day the relay was
set up and the day we discovered the relay’s malicious activity.

Apart from all the conspicuous HTTPS MitM attacks which we will discuss
in Section 5.2, we exposed several relays running sslstrip. The relay 5A2A51D4 in-
jected custom HTML code into HTTP traffic (see Appendix B and Section 5.1).
The injected HTML code was discovered by our sslstrip module which assures
that the returned HTML code is exactly as expected. Besides, relays in Malaysia,
Hong Kong, and Turkey were subject to DNS censorship. The relays in Hong
Kong seem to have fallen prey to the Great Firewall of China’s DNS poisoning;
perhaps, the relays made use of a DNS resolver in China. Several domains such
as torproject.org, facebook.com and youtube.com returned invalid IP addresses
which were also found in previous work [21]. Finally, four relays were misconfig-
ured as they used an OpenDNS policy which censored at least web sites in the
category “pornography”. The last two relays in the table ran anti virus prod-
ucts which broke into IMAPS sessions; presumably for content inspection. All
the remaining relays engaged in HTTPS, SSH, and XMPP MitM attacks. Upon
establishing a connection to the decoy destination, these relays exchanged the
destination’s certificate with their own, self-signed version. Since these certifi-
cates were not issued by a trusted authority stored in TorBrowser’s certificate
store, a user falling prey to such a MitM attack would be redirected to the
about:certerror warning page. We will discuss some attacks in greater detail in
Section 5.

4.2 Detecting Traffic Sniffing with HoneyConnector

We deployed HoneyConnector on October 13th, 2013, and after an initial test-
ing phase of two weeks on a residential service provider network we deployed it
on multiple hosting providers across Europe. The evaluation period lasted until
February 10th, 2014, resulting in approximately four months overall deployment.
The modified FTP server was deployed in Germany with Hetzner Hosting while
the modified IMAP server was deployed with OVH. HoneyConnector can be con-
figured to use multiple server instances of the services, but for the evaluation we
decided to go with the baseline minimum of two virtual machines. We cannot
ascertain whether the destination’s network location was an additional incentive
for sniffers, e.g., due to its IP range or hostname. Furthermore, these hosting
services might be of particular interest for sniffers since (in the attackers per-
ception) there is no central software update mechanism available to customers,
the servers have high availability and high bandwidth, and are prone to mis-
configuration due to inexperienced customers. The client establishing the bait
connections was run locally on our own machines.

During the four month deployment of HoneyConnector, we registered a total
of 255 login attempts with 128 sniffed plaintext credentials, tracing back to 27

about:certerror

316 P. Winter et al.

Table 1. All 40 malicious and misconfigured exit relays we discovered over a period
of seven months. The data was collected right after a relay was discovered. We have
reason to believe that all relays whose fingerprint ends with a † were run by the same
attacker

Fingerprint IP addresses Country Bandwidth Problem First active Discovery
F8FD29D0† 176.99.12.246 Russia 7.16 MB/s HTTPS MitM 2013-06-24 2013-07-13

8F9121BF† 64.22.111.168/29 U.S. 7.16 MB/s HTTPS MitM 2013-06-11 2013-07-13

93213A1F† 176.99.9.114 Russia 290 KB/s HTTPS MitM (50%) 2013-07-23 2013-09-19

05AD06E2† 92.63.102.68 Russia 5.55 MB/s HTTPS MitM (33%) 2013-08-01 2013-09-19

45C55E46† 46.254.19.140 Russia 1.54 MB/s SSH & HTTPS MitM (12%) 2013-08-09 2013-09-23

CA1BA219† 176.99.9.111 Russia 334 KB/s HTTPS MitM (37.5%) 2013-09-26 2013-10-01

1D70CDED† 46.38.50.54 Russia 929 KB/s HTTPS MitM (50%) 2013-09-27 2013-10-14

EE215500† 31.41.45.235 Russia 2.96 MB/s HTTPS MitM (50%) 2013-09-26 2013-10-15

12459837† 195.2.252.117 Russia 3.45 MB/s HTTPS MitM (26.9%) 2013-09-26 2013-10-16

B5906553† 83.172.8.4 Russia 850.9 KB/s HTTPS MitM (68%) 2013-08-12 2013-10-16

EFF1D805† 188.120.228.103 Russia 287.6 KB/s HTTPS MitM (61.2%) 2013-10-23 2013-10-23

229C3722 121.54.175.51 Hong Kong 106.4 KB/s sslstrip 2013-06-05 2013-10-31

4E8401D7† 176.99.11.182 Russia 1.54 MB/s HTTPS MitM (79.6%) 2013-11-08 2013-11-09

27FB6BB0† 195.2.253.159 Russia 721 KB/s HTTPS MitM (43.8%) 2013-11-08 2013-11-09

0ABB31BD† 195.88.208.137 Russia 2.3 MB/s SSH & HTTPS MitM (85.7%) 2013-10-31 2013-11-21

CADA00B9† 5.63.154.230 Russia 187.62 KB/s HTTPS MitM 2013-11-26 2013-11-26

C1C0EDAD† 93.170.130.194 Russia 838.54 KB/s HTTPS MitM 2013-11-26 2013-11-27

5A2A51D4 111.240.0.0/12 Taiwan 192.54 KB/s HTML Injection 2013-11-23 2013-11-27

EBF7172E† 37.143.11.220 Russia 4.34 MB/s SSH MitM 2013-11-15 2013-11-27

68E682DF† 46.17.46.108 Russia 60.21 KB/s SSH & HTTPS MitM 2013-12-02 2013-12-02

533FDE2F† 62.109.22.20 Russia 896.42 KB/s SSH & HTTPS MitM (42.1%) 2013-12-06 2013-12-08

E455A115 89.128.56.73 Spain 54.27 KB/s sslstrip 2013-12-17 2013-12-18

02013F48 117.18.118.136 Hong Kong 538.45 KB/s DNS censorship 2013-12-22 2014-01-01

2F5B07B2 178.211.39 Turkey 204.8 KB/s DNS censorship 2013-12-28 2014-01-06

4E2692FE 24.84.118.132 Canada 52.22 KB/s OpenDNS 2013-12-21 2014-01-06

A1AF47E3 207.98.174.40 U.S. 98.3 KB/s OpenDNS 2013-12-20 2014-01-24

BEB0BF4F† 37.143.14.176 Russia 1.54 MB/s XMPP MitM 2013-12-16 2014-01-25

C37AFA7F 81.219.51.206 Poland 509.3 KB/s OpenDNS 2014-02-03 2014-02-06

975ACB99 54.200.151.237 U.S. 2.73 MB/s sslstrip 2014-01-26 2014-02-08

B40A3DC6 85.23.243.147 Finland 50 KB/s IMAPS anti virus 2013-11-04 2014-02-10

E5A75EE1 132.248.80.171 Mexico 102.4 KB/s IMAPS anti virus 2013-04-24 2014-02-10

423BCBCE 54.200.102.199 U.S. 702.66 KB/s sslstrip 2014-02-13 2014-02-14

F7B4BC6B 54.213.13.21 U.S. 431.78 KB/s sslstrip 2014-02-14 2014-02-15

DB7C7DDD 37.143.8.242 Russia 267.86 KB/s sslstrip 2014-02-18 2014-02-18

426E8E2F 54.201.48.216 U.S. 2.25 MB/s sslstrip 2014-02-09 2014-02-18

D81DAC47 117.18.118.136 Hong Kong 166.31 KB/s DNS censorship 2014-01-27 2014-02-14

BDBFBBC3 209.162.33.125 U.S. 806.46 KB/s OpenDNS 2014-03-06 2014-03-06

564E995A 67.222.130.112 U.S. 204.8 KB/s sslstrip 2013-08-19 2014-03-13

7F2240BF 198.50.244.31 Canada 721.47 KB/s sslstrip 2014-03-27 2014-04-04

DA7A2EDC 121.121.82.198 Malaysia 82.79 KB/s DNS censorship 2014-03-07 2014-04-15

Spoiled Onions: Exposing Malicious Tor Exit Relays 317

sniffing exit relays. Among all 255 login attempts, 136 were targeting FTP and
119 were targeting IMAP. From all 128 sniffed credentials, 97 were for FTP and
31 for IMAP. We observed one of the relays using two different Tor identity
fingerprints for different login attempts and sniffed credentials, but since the
nickname and IP address stayed the same and Tor’s software version changed,
we counted it only once. The identity fingerprint can be changed during soft-
ware updates if no precautions are met by the operator. Overall, 2,611 distinct
servers (based on the identity fingerprints) have seen bait connections, but this
is considered an upper bound since there was a Tor software update from ver-
sion 0.2.3 to 0.2.4 in December and there were up to approximately 1,000 exit
relays online during the evaluation. Even though the HoneyConnector architec-
ture was initially unstable, a login attempt with sniffed credentials was already
registered during the very first night of stability testing (October 13th). In total,
we conducted approximately 27,000 bait connection for FTP and IMAP each,
resulting in approximately 54,000 plaintext credentials created by the Honey-
Connector client software. A total of 0.24% of these credentials were used during
reconnects by the sniffing exit relay operators.

Table 2 shows the details of all sniffing exit relays we discovered. Again, it
includes the first 4 bytes of the relay’s unique 20-byte SHA-1 fingerprint, the re-
lay’s bandwidth and country (also resolved using the GeoIP lite database). The
triple in angle brackets represents the 1) unique number of plaintext credentials
sent, the 2) number of different plaintext credentials used by the malicious oper-
ator (a subset of the set of unique credentials sent) as well as the 3) total number
of connection attempts conducted with these credentials. If a relay’s exit policy
permitted it, both IMAP and FTP were used for bait connections. Furthermore,
the table shows whether the operator tried to log in using the FTP or the IMAP
credentials, or both. The distribution of login attempts over the four month pe-
riod can be seen in Fig. 6. FTP login attempts are shown as triangles and IMAP
as squares. At most, there were ten FTP login attempts a day, whereas IMAP
peaked at 33 login attempts a day. On average and across all sniffing nodes,
about 60% of the bait credentials sent were used.

Another aspect is the time interval in between the bait connection made
by HoneyConnector and the subsequent reconnect by the exit node operator.
Fig. 7 shows the time in interval between the transmission of the bait credentials
and the reconnection attempts, clustered in (non-linear) time intervals. While
the light gray bars only account for the first reconnection attempt, the darker
bars account for all reconnection attempts, including repeatedly using the same
credentials. About 25% of all login attempts were made within the first eight
hours, while half of all reconnection attempts were made within 48 hours. The
shortest time period until the first observed reconnection attempt was only three
minutes and ten seconds and done by the Estonian exit node “FreedomFighter”.
The longest observed time interval was related to the reconnection made by
“default” located in Hong Kong, with credentials that were sent more than two
months before (63 days).

318 P. Winter et al.

Table 2. All 27 exit relays which were found sniffing login credentials. The triple reads
<no. of credentials sent, no. of credentials tried, no of connection attemtps>, dynamic
refers to multiple IPs from 120.56.0.0/14 and 59.176.0.0/13.

Fingerprint IP addresses Country Bandwidth Sniffed Protocol HoneyConnection Reconnection
08F097F8 58.120.227.83 South Korea 1136.64 KB/s FTP <36,35,70> 2013-10-17 2013-10-17

0FE41A85 46.246.108.146 Sweden 4326.85 KB/s FTP <1,1,6> 2014-01-20 2014-01-21

229C3722 121.54.175.51 Hong Kong 168.74 KB/s FTP <2,1,14> 2013-11-04 2014-01-07

28619F94 dynamic India 51.94 KB/s IMAP & FTP <15,4,50> 2013-11-07 2013-11-13

319D548B 91.219.238.139 Hungary 1075.2 KB/s FTP <2,1,47> 2013-12-24 2013-12-14

3A484AFC dynamic India 73.4 KB/s IMAP & FTP <15,7,55> 2013-10-27 2013-10-30

52E24E09 dynamic India 57.15 KB/s IMAP & FTP <7,6,44> 2013-10-17 2013-10-18

5761CB9C 109.87.249.227 Ukraine 2.05 KB/s FTP <6,2,4> 2013-11-28 2013-11-28

5A2A51D4 111.240.0.0/12 Taiwan 75.47 KB/s IMAP <1,1,57> 2013-11-02 2014-01-20

5A3B2DEC 66.85.131.84 U.S. 512.0 KB/s IMAP <6,2,33> 2013-11-30 2013-12-03

6018E567 51.35.183.211 U.K. 312.1 KB/s FTP <1,1,6> 2014-01-24 2014-01-24

61288460 88.150.227.162 U.K. 353.0 KB/s IMAP & FTP <31,3,11> 2013-11-14 2013-11-15

6C9AAFEA dynamic India 53.95 KB/s IMAP & FTP <20,12,44> 2013-10-17 2013-10-18

46B3ADE6 85.17.183.69 Netherlands 234.18 KB/s FTP <2,1,6> 2013-12-27 2014-01-09

8450F3CA moved once Germany 2938.88 KB/s FTP <12,7,16> 2013-12-16 2013-12-16

8A47C9B0 100.42.236.34 U.S. 237.4 KB/s FTP <3,1,4> 2013-12-03 2013-12-05

9F7DBC53 76.74.178.217 U.S. 133.57 KB/s FTP <1,1,1> 2013-12-16 2013-12-17

A68412BA moved once U.S. 989.67 KB/s FTP <7,5,13> 2013-12-16 2013-12-17

AA6D6919 85.25.46.189 Germany 59.52 KB/s FTP <2,1,2> 2013-10-17 2013-10-19

ADE35AA1 dynamic India 35.53 KB/s IMAP & FTP <3,3,15> 2013-10-18 2013-10-18

BF74938A 89.79.83.166 Poland 1979.39 KB/s FTP <7,1,7> 2013-12-23 2013-12-23

C5398CD1 dynamic India 53.82 KB/s IMAP & FTP <14,9,43> 2013-10-14 2013-10-15

EBCA226D 46.246.95.193 Sweden 2737.89 KB/s FTP <1,1,1> 2014-01-21 2014-01-23

F0AAFC6D dynamic India 56.65 KB/s IMAP & FTP <30,16,56> 2013-10-17 2013-10-18

F0DD7385 76.189.8.28 Canada 111.42 KB/s FTP <1,1,21> 2013-10-14 2013-10-14

F57E0775 151.217.63.51 Germany 537.62 KB/s IMAP & FTP <24,2,2> 2013-12-29 2013-12-29

FEE8C068 46.22.211.36 Estonia 119.51 KB/s FTP <5,5,57> 2013-11-21 2013-11-22

Fig. 6. The diagram illustrates the amount of rogue login attempts over time. While
we did not witness any login attempts for most days, some days saw up to 33 login
attempts.

Spoiled Onions: Exposing Malicious Tor Exit Relays 319

5 Discussion

After having presented an overview of our results in Section 4, we now focus on
and discuss several interesting aspects of our data sets. In particular, we found
several instances of colluding exit relays, destination targeting, and human errors
among malicious exit relay operators.

5.1 Data Set Overlap

Only two exit relays were caught by both of our scanners, exitmap as well as
HoneyConnector. The first one, 5A2A51D4, was located in Taiwan and was found
to sniff IMAP credentials as well as to inject HTML code (see Appendix B).
While the HTML code was not malicious at the time we tested the relay, it
is possible that the injected code changed over time or that the code changed
depending on the HTTP Host header sent by the Tor user. The second relay
which was located in Hong Kong, 229C3722, ran sslstrip as well as sniffed FTP
credentials.

Fig. 7. The time interval between the honey connection and the login attempts

5.2 The “Russian HTTPS Group”

Interestingly, we have reason to believe that all relays in Table 1 whose fin-
gerprint ends with a † were run by the same person or group of people. This
becomes evident when analyzing the self-signed certificates which were injected
for the MitM attacks. In every case, the certificate chain consisted of only two
nodes which both belonged to a “Main Authority” and the root certificate of

320 P. Winter et al.

all chains—shown in Appendix A—was identical. This means that these attacks
can be traced back to a common origin even though it is not clear where or
what this origin is as we will discuss later. Apart from the identical root cer-
tificate, these relays had other properties in common. First, with the exception
of 8F9121BF which was located in the U.S., they were all located in Russia.
Upon investigating their IP addresses, we discovered that most of the Russian
relays were run in the network of a virtual private system (VPS) provider. Sev-
eral IP addresses were also located in the same netblock, namely 176.99.12.246,
176.99.9.114, 176.99.9.111, and 176.99.11.182. All these IP addresses are part
of the netblock GlobaTel-net which spans 176.99.0.0/20. Furthermore, the ma-
licious exit relays all used Tor version 0.2.2.37.6 Given its age, this is a rather
uncommon version number among relays. In fact, we found only two benign exit
relays—in Switzerland and the U.S.—which are running the same version. We
suspect that the attackers might have a precompiled version of Tor which they
simply copy to newly purchased systems to spawn new exit relays. Unfortunately,
we have no data which would allow us to verify when this series of attacks began.
However, the root certificate shown in Appendix A indicates that it was created
on February 12, 2013.

Connection Sampling. Whenever our hunt for malicious relays yielded an-
other result, we first tried to confirm the attack by rerunning the scan over the
newly discovered relay. However, in the case of the Russian relays, this did not
always result in the expected HTTPS MitM attack. Instead, we found that only
every nth connection seemed to have been attacked. We estimated the exact
sampling rate by establishing 50 HTTPS connections over every relay. We used
randomly determined sleep periods in between the scans in order to disguise our
activity. The estimated sampling rate is shown in Table 1 next to the respective
attack in parentheses. For all Russian relays, it varies between 12% and 68%. We
do not have an explanation for the attacker’s motivation to sample connections.
One theory is that sampling makes it less likely for a malicious exit relay to be
discovered; but at the cost of collecting fewer MitM victims. Interestingly, the
sampling technique was implemented ineffectively. This is due to the way how
Firefox (and as a result TorBrowser) reacts to self-signed certificates. When fac-
ing a self-signed X.509 certificate, Firefox displays its about:certerror page which
warns the user about the security risk. If a user then decides to proceed, the
certificate is fetched again. We observed that the malicious exit relays treat the
certificate re-fetching as a separate connection whose success again depends on
the relay’s sampling rate. As a result, a sampling rate of n means that a MitM
attack will only be successfully with a probability of n2 rather than n.

Who Is the Attacker?. An important question is where on the path from the
exit relay to the destination the attacker is located. At first glance, one might
6 For comparison, as of January 2014, the current stable version is 0.2.4.20. Version

0.2.2.37 was declared stable on June 6th, 2012.

about:certerror

Spoiled Onions: Exposing Malicious Tor Exit Relays 321

blame the exit relay operator. However, it is also possible that the actual attack
happens after the exit relay, e.g., in the exit relay’s ISP, the network backbone,
or the destination’s ISP. In fact, such an incident was documented in 2006 for
a relay located in China [7]. With respect to our data, we cannot entirely rule
out that the HTTPS MitM attacks were actually run by an upstream provider
of the Russian exit relays. However, we consider it unlikely for the following
reasons: 1) the relays were located in diverse IP address blocks and there were
numerous other relays in Russia which did not exhibit this behavior, 2) one of
the relays was even located in the U.S., 3) there are no other reported cases
on the Internet involving a certification authority called “Main Authority”, and
4) the relays frequently disappeared after they were assigned the BadExit flag.
The identity of the attacker is difficult to ascertain. The relays did not publish
any contact information, nicknames, or revealed other hints which could enable
educated guesses regarding the attacker’s origin.

Destination Targeting. While Tor’s nature as an anonymity tool renders tar-
geting individuals difficult,7 an attacker can target classes of users based on
their communication destination. For example, an attacker could decide to only
tamper with connections going to the fictional www.insecure-bank.com. Inter-
estingly, we found evidence for exactly that behavior; at some point the Russian
relays began to target at least facebook.com. We tested the HTTPS version
of the Alexa top 10 web sites [1] but were unable to trigger MitM attacks de-
spite numerous connection attempts. Popular Russian web sites such as the mail
provider mail.ru and the social networking site vk.com also remained unaffected.
Note that it is possible that the relays targeted additional web sites we did not
test for. Enumerating targeted web sites would mean probing thousands of differ-
ent web sites. We have no explanation for the targeting of destinations. It might
be another attempt to delay discovery by vigilant users. However, according to
previous research [16], social networking appears to be just as popular over Tor
as it is over the open Internet. As a result, limiting the attack to facebook.com
might not delay discovery significantly.

5.3 The “International Sniffer Group”

A group of international exit relays in Table 2 is obviously colluding with the
clear intent of sniffing credentials as the credentials that were sent over these
nodes were tested in batches. Since the relays are spread over Europe and the
U.S., we called it the International group, even though it is possible that they
are all operated by the same single person. It consists of the five relays “Chu-
pacabras”, “AlleyCAT”, “NennoExit”, “Aragaun” (Previously “UMBRELLAx-
CORP” at the same IP address), and “ShredOwl”, located in the U.S., Germany,
Netherlands, and Sweden. One of the nodes, “Chupacabras”, moved from Ger-
many to the U.S. during our evaluation.
7 We assume of course that Tor users do not deliberately reveal their real identity,

e.g., by posting on Internet forums under their real name.

322 P. Winter et al.

5.4 The “Indian Sniffer Group”

The second group that stuck out during our evaluation is a group of seven
Indian exit relays in Table 2. These relays were responsible for 104 out of all
255 reconnection attempts (41%) and employed a number of distinguishable
reconnect patterns that are unique to this group. All of the seven nodes within
this group were operated on dynamic allocated IP addresses belonging to the
ISP “Mahanagar Telephone Nigam Ltd.”, and had a bandwidth between 50 and
80 KB/s. All relays ran Tor in version 0.2.3.25 on Microsoft Windows; four
relays ran Windows 7, while three relays ran Windows Vista. Furthermore, the
nodes seemed to change their IP address every six hours, resulting in bad uptime
statistics for them. Because of the low bandwidth bundled with the poor uptime
statistics, the probability of Tor exit traffic being routed over these nodes is very
low.

Most login attempts were made by using the Mail2Web service [28] which
obfuscates the real source of the connection. In fact, Mail2Web was solely used by
the group of Indian nodes. However, fingerprints of Mozilla Thunderbird version
3.1.20 on Windows Vista was used over Tor on two occasions in November. For
reconnecting with FTP, either Microsoft Internet Explorer or Mozilla Firefox
was used. All connections made with Internet Explorer originated from one of
the nodes which was running at this time which suggests that this browser
used the Internet connection directly. All login attempts made with Firefox were
conducted through the Tor network but from different exit relays which suggests
the use of TorBrowser. The variety of software used and the number of concurrent
IP addresses point in the direction that those nodes are operated by more than
one individual, although not conclusively.

5.5 Who Reused the Bait Credentials?

For HoneyConnector, the majority of reconnects—145, or 57%—was conducted
over the Tor network, i.e., the IP address was part of the Tor network (verified
using ExoneraTor [29]) but not the relay which sniffed the credentials. This
comes as no surprise since exit relay operators are expected to be familiar with
the Tor network. Therefore, it is difficult to conclude who initiated the reconnect.
However, 45 reconnections (18%) originated from the same IP address as the
exit relay which originally sniffed the credentials. This means that the malicious
operator could have used the exit relay for a direct connection (i.e., not over
Tor) or Tor was manually configured to use this particular relay as exit. 16%
(41) of all reconnections used the service Mail2Web. Since the servers of this
service connect directly to a given IMAP server, it is not possible to assess if
the user was additionally using Tor, or used this service directly. However, this
service was only used by the operator or group of operators from the Indian exit
nodes. In 22 cases (9%) of all reconnections, the source IP address was no Tor
relay and we were unable to associated the IP address with any VPN service,
meaning that the connection was likely originating from a host under the direct
control of the relay operator. Within this subset, we found connections from IP

Spoiled Onions: Exposing Malicious Tor Exit Relays 323

addresses that belonged to hosting companies, mobile UMTS Internet services,
and private home connections by consumer Internet service providers. One IP
address was found to belong to a Japanese university. In two cases, the reverse
DNS record of the respective IP address suggests that a VPN service was used.

The software used for the reconnections can also reveal information about the
relay operator as its default configuration can be unsuitable for the Tor net-
work [8], and improper usage of client software can lead to deanonymization [3,
4]. This includes default login credentials such as “mozilla@example.com” as
password for an anonymous FTP login with Mozilla Firefox, attempts to fetch
data over side channels, e.g., Mozilla Thunderbird trying to fetch an XML file
containing data for automatic configuration, or simply the IP address of freely
available web services such as Mail2Web. The largest amount of reconnections—
117, or 46%—contained no hints or direct information on the software used.
Mail2Web was used in 41 (or 16%) reconnections, but since it is a web service
connecting to IMAP accounts through a web interface, no additional informa-
tion could be inferred. All credentials used were sent over Indian relays (see
Section 5.4). The connections by Mail2Web were easily recognizable due to the
reverse record of the respective IP addresses. The Indian nodes as well as the
operator of the British node “AstralNode” used Thunderbird for IMAP reconnec-
tions (20% or 51 reconnections) since Thunderbird issues a request for an XML
file during account setup containing instructions for automatic configuration.
The German exit node “h0rny30c3” is also very likely to have used Thunderbird
due to connection patterns, but the request for the auto configuration XML file
was not found. As for FTP reconnections, we could identify the use of Firefox
and Internet Explorer. The Firefox-based TorBrowser is the browser of choice in
the Tor Browser Bundle (TBB), and as such the recommended way of accessing
the Tor network. Firefox was used in 25 reconnection (10%), Internet Explorer
was used for 21 reconnections (9%).

5.6 Human Errors During Reconnections

Using sniffed credentials is harder than it seems, and we found multiple peculiar-
ities in our logs that we would like to share as well. Out of all 255 reconnection
attempts, 31 (or 12%) were made with incorrect credentials, in most cases with
apparent copy-paste errors by omitting characters at the beginning or the end
of a password; specifically when punctuation or special characters were used.
Other instances included multiple pastes of the same password, omitted parts of
the IMAP username or typographical errors showing that these passwords were
typed manually. We were also able to observe that sniffers monitoring multiple
protocols can become confused as to what credentials to use for which service:
the node “SuperDuperLative” for example used IMAP bait credentials for FTP
reconnections, twice. The operator also tried the password with and without
quotation marks in another instance. The operator of the Indian node “atlas”
was mixing two different username and password combinations, trying to authen-
ticate for one username with the password of another username. The operator
of the relay “pcrrtor1” used a seemingly random password that was not sent as

324 P. Winter et al.

part of any bait connection at all from our side. The operators of “Chupacabras”
and “ShredOwl” seem to have pasted the FTP URL into the wrong browser—in
both cases they revealed their true IP address by using Google Chrome before
switching to Firefox through Tor, clearly visible due to the default anonymous
credentials tried by Firefox.

The two biggest spikes of IMAP logins seen in Fig. 6 were made by using the
configuration wizard of Mozilla Thunderbird for creating a new connection to
an IMAP server, in which the e-mail client uses multiple login attempts to auto-
mate setup and to verify if the connection was configured properly. The logs also
indicate that further attempts were done afterwards to test and troubleshoot the
configuration but since it was not possible to log in with the snooped credentials,
Thunderbird would only display error messages. However, most of the recorded
logins had either errors in their sequences, certain erratic-appearing client fin-
gerprints with differing reconnection times, pointing us to the conclusion that all
reconnections were conducted manually. One exception here could be the recon-
nections related to the relay “SuperDuperLative”: most of these reconnections
were made either around a static time or by processing a whole batch of sniffed
credentials within a certain timeframe while using Tor.

5.7 Implications for Tor Users

●

●

●
●
●

●●●

●●

●
●

●
●
●
●
●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●●

●●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●
●
●●

●●
●

●

●

0 1000 3000 5000

5
20

10
0

50
0

Hours online

A
m

ou
nt

 o
f e

xi
t r

el
ay

s

Fig. 8. The amount of hours, all 6,835
unique exit relays spent online in between
Sept. 2014 and Mar. 2014. 2,698 exit relays
vanished after being part of the network for
50 hours or less.

A question which is of interest to Tor
users is “what fraction of exit relays
is malicious?”. To answer this ques-
tion, it is tempting but insufficient to
divide our results by the total num-
ber of exit relays, e.g., 65

1000 ≈ 6%.
This calculation is biased as it does
not consider the change of exit relays
over time. This metric is captured by
the churn rate, i.e., the rate at which
new exit relays join the network and
existing ones leave.

We obtained an idea of the net-
work’s churn rate by determining the
amount of unique exit relays (based
on the relay’s identity fingerprint)
which were part of the network from
September 2013 to March 2014. For
every unique relay, we also calculate
the amount of hours, it served the net-
work. In total, we observed 6,835 unique exit relay identity fingerprints. The
distribution—with intervals of 50 hours—is illustrated in Fig. 8. A total of 2,698
exit relays was online for only 50 hours or less in these seven months. 137 exit
relays were online for 5,052 hours or more—which is close to the maximum of
5,088 hours. The diagram clearly shows that given the network’s considerable

Spoiled Onions: Exposing Malicious Tor Exit Relays 325

churn rate, our scanners tested many more relays than the overall amount of
exit relays at a given point in time. An estimate for the probability of selecting a
malicious exit relay in a circuit would also require the consideration of a relay’s
observed bandwidth.

To protect against sniffing exit relays, end-to-end encryption should be used
whenever possible. In particular, HTTPS should be preferred over its unen-
crypted alternative. The same applies to other protocols which have more se-
cure TLS-based alternatives, e.g., SMTPS or IMAPS. Note that TorBrowser’s
HTTPS-Everywhere extension automatically redirects the user to many HTTPS-
enabled web sites whenever possible. Outside the Tor network, server operators
can and should help by enabling ubiquitous encryption for all services they run,
e.g., by making use of HTTP Strict Transport Security [14].

5.8 Limitations

For both our frameworks, exitmap and HoneyConnector, performing attribution
is problematic, meaning that it is difficult to distinguish if the attacker is the
relay operator or any other entity along the path from the exit relay to the
destination. This can be for example the relay’s ISP, any other ISP along the
path, or a nation-state adversary. Even though it is in our opinion unlikely (due
to the ease of running a malicious Tor exit relay), it cannot be ruled out entirely.
Nevertheless, if such attacks seem to be run by an exit relay whereas they are
in fact conducted by the network backbone, it is beneficial to all Tor users that
this relay is assigned the BadExit flag.

5.9 Ethical Aspects

Due to exitmap’s modular architecture, it can be used for various unintended and
even unethical purposes. For example, modules for web site scraping or online vot-
ing manipulation come to mind. All sites which naively bind identities to IP ad-
dresses might be an attractive target. While we do not endorse such actions, we
point out that these activities are hard to stop and will continue to happen and
already happen regardless; with or without scanner. If somebody decides to abuse
our scanner for such actions, it will at least spare the Tor network’s resources more
than a naive design. As a result, we believe that by publishing our code, the benefit
to the public outweighs the damage caused by unethical usage.

6 Thwarting HTTPS MitM Attacks

The discovery of destination targeting made us reconsider defense mechanisms.
Unfortunately, we cannot rule out that there are additional, yet undiscovered exit
relays which target low-profile web sites. If we wanted to achieve high coverage,
we would have to probe millions of web sites; and considering the connection
sampling discussed in Section 5.2, this has to be done repeatedly! After all, an
attacker is able to arbitrarily reduce the scope of the attack but we are unable to
arbitrarily scale our scanner. This observation motivated another defense mech-
anism which is discussed in this section.

326 P. Winter et al.

6.1 Threat Model

We consider an adversary who is controlling the upstream Internet connection
of a small fraction of exit relays.8 The adversary’s goal is to run HTTPS-based
MitM attacks against Tor users. We further expect the adversary to make an
effort to stay under the radar in order to delay discovery. The actual MitM
attack is conducted by injecting self-signed certificates in the hope that users
are not scared off by the certificate warning page. Our threat model does not
cover adversaries who control certificate authorities which would enable them
to issue valid certificates to avoid TorBrowser’s warning page. This includes
several countries as well as organizations which are part of TorBrowser’s root
certificate store. Furthermore, we cannot defend against adversaries who control
a significant fraction of the Tor network’s exit bandwidth.

6.2 Multi Circuit Certificate Verification

As long as an attacker is unable to tamper with all connections to a given des-
tination,9 MitM attacks can be detected by fetching a public key over differing
paths in the network. This approach was picked up by several projects including
Perspectives [37], Convergence [19] and Crossbear [6]. In this section, we discuss
a patch for TorBrowser which achieves the same goal but is adapted to the Tor
network. Apart from NoScript and HTTPS-Everywhere, TorBrowser contains
another important extension: Torbutton. This extension provides the actual in-
terface between TorBrowser and the local Tor process. It directs TorBrowser’s
traffic to Tor’s SOCKS port and exposes a number of features such as the pos-
sibility to create a new identity. Torbutton already contains rudimentary code
to talk to Tor over the local control port. The control port—typically bound
to 127.0.0.1:9151—provides local applications with an interface to control Tor.
For example, Torbutton’s “New Identity” feature is implemented by sending
the NEWNYM signal which instructs Tor to switch to clean circuits so that new
application requests do not share circuits with old requests. Torbutton already
implements a useful code base for us which made us decide to implement our
extension as a patch for Torbutton rather than build an independent extension.

6.3 Extension Design

Our patch hooks into the browser event DOMContentLoaded which is triggered
whenever a document (but not necessarily stylesheets and images) is loaded
and parsed by the browser. We then check if the URI of the page contains
“about:certerror” as TorBrowser displays this page whenever it encounters a self-
signed certificate. However, it is not clear whether the certificate is genuinely
self-signed or part of an attack. In order to be able to distinguish between these
two cases, our patch now attempts to re-fetch the certificate over at least one
8 By “fraction”, we mean a relay’s bandwidth as it determines how likely a client is

to select the relay as part of its circuit.
9 This would be the case if an attacker controls the destination.

about:certerror

Spoiled Onions: Exposing Malicious Tor Exit Relays 327

additional and distinct Tor circuit as illustrated in Fig. 9. We create a fresh cir-
cuit by sending SIGNAL NEWNYM to Tor’s control port. Afterwards, we re-fetch the
certificate by issuing an XMLHttpRequest. If the SHA-1 fingerprints of both cer-
tificates match, the certificate is probably genuine.10 Otherwise, the user might
have fallen prey to a MitM attack. False positives are possible, though: large
sites could have different certificates for different geographical regions. Note that
we are not very likely to witness many false positives as our code is only run
upon observing self-signed certificates or certificates which somehow trigger the
about:certerror warning page.

User running Tor
Browser Bundle

Destination
Entry
guard

Tor
network

"Spoiled" exit
doing MitM

Benign
exit

Middle
relay

Middle
relay

1
2

Fig. 9. A user stumbles across a self-signed
certificate ➊ which could be an indication
for an HTTPS MitM attack ran by a mali-
cious exit relay. To verify if the certificate
is genuine, the client re-fetches it over an
independent exit relay ➋ and checks if the
two certificates match or not.

Our extension also informs the user
about a potential MitM attack. In
case of differing certificates, we open
a browser dialog which informs the
user about the situation. A screenshot
of our design prototype is shown in
Fig. 10. The dialog points out that
this is likely an attack and asks the
user for permission to send the data
to the Tor Project for further inspec-
tion. The submitted data contains the
exit relays used for certificate fetching
as well as the observed certificates. We
transmit no other data which could
be used to identify users; as a re-
sult, certificate submission is anony-
mous. While it is technically possible
to transmit the data silently, we believe that users would not appreciate this and
consider it as “phoning home”. As a result, we seek to obtain informed consent.

6.4 Limitations

Fig. 10. The popup window in TorBrowser
which informs the user about the potential
HTTPS MitM attack. The user can agree
to submitting the gathered information to
the Tor Project for further inspection.

Our threat model does not consider
adversaries with the ability to issue
valid certificates. While our extension
could easily be extended to conduct
certificate comparison for all observed
certificates, it would flood the Tor
network with certificate re-fetches. To
make matters worse, the overwhelm-
ing majority of these re-fetches would
not even expose any attacks. There
exist other techniques to foil CA-
capable adversaries such as certificate
10 Note that powerful adversaries might be able to control multiple exit relays, network

backbones, or even the destination.

about:certerror

328 P. Winter et al.

pinning [20]. By default, our patch re-fetches a self-signed X.509 certificate only
once. An attacker who is controlling a significant fraction of exit relays might be
able to conduct a MitM attack for the first as well as for the second fetch. Nev-
ertheless, we would eventually expose the attack; it would simply be a matter of
time until a client selects two independent exit relays for certificate comparison.

7 Conclusions

In this paper, we revisited the trustworthiness of Tor exit relays. After develop-
ing two exit relay scanners, we closely monitored the Tor network over a period
of several months. This effort led to the discovery of 65 relays which were ei-
ther misconfigured or outright malicious. Interestingly, we have evidence that
a non-trivial fraction of all attacks were coordinated rather than isolated. Our
results further suggest that the attackers made an active effort to remain un-
der the radar and delay detection. To protect the Tor network from malicious
exit relays, we developed exitmap and HoneyConnector; easily extensible scanners
which are able to probe exit relays for a variety of MitM and traffic sniffing at-
tacks. Furthermore, we developed a patch for TorBrowser’s Torbutton extension
which is able to fetch self-signed X.509 certificates over different network paths
in order to verify their trustworthiness. All our source code is freely available at
http://www.cs.kau.se/philwint/spoiled_onions.

Acknowledgments. We want to thank Internetfonden whose research grant
funded the authors from Karlstad University. This work has also been supported
by COMET K1, FFG – Austrian Research Promotion Agency. Finally, we want
to thank Aaron Gibson, Georg Koppen, Harald Lampesberger, and Linus Nord-
berg for helpful feedback and suggestions.

References

[1] Alexa: The top 500 sites on the web (2013),
http://www.alexa.com/topsites

[2] Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006),
http://cr.yp.to/ecdh/curve25519-20060209.pdf

[3] Le Blond, S., et al.: One Bad Apple Spoils the Bunch: Exploiting P2P Applications
to Trace and Profile Tor Users. In: LEET. USENIX (2011),
https://www.usenix.org/legacy/events/leet11/tech/
full_papers/LeBlond.pdf

[4] Le Blond, S., et al.: Spying the World from Your Laptop: Identifying and Profiling
Content Providers and Big Downloaders in BitTorrent. In: LEET. USENIX (2010),
https://www.usenix.org/legacy/event/leet10/tech/
full_papers/LeBlond.pdf

http://www.cs.kau.se/philwint/spoiled_onions
http://www.alexa.com/topsites
http://cr.yp.to/ecdh/curve25519-20060209.pdf
https://www.usenix.org/legacy/events/leet11/tech/full_papers/LeBlond.pdf
https://www.usenix.org/legacy/events/leet11/tech/full_papers/LeBlond.pdf
https://www.usenix.org/legacy/event/leet10/tech/full_papers/LeBlond.pdf
https://www.usenix.org/legacy/event/leet10/tech/full_papers/LeBlond.pdf

Spoiled Onions: Exposing Malicious Tor Exit Relays 329

[5] Chakravarty, S., Portokalidis, G., Polychronakis, M., Keromytis, A.D.: Detecting
Traffic Snooping in Tor Using Decoys. In: Sommer, R., Balzarotti, D., Maier, G.
(eds.) RAID 2011. LNCS, vol. 6961, pp. 222–241. Springer, Heidelberg (2011),
http://www.cs.columbia.edu/˜mikepo/papers/
tordecoys.raid11.pdf

[6] Crossbear, http://www.crossbear.org
[7] Dingledine, R.: Re: Holy shit I caught 1 (2006),

http://archives.seul.org/or/talk/Aug-2006/msg00262.html
[8] Dingledine, R., Mathewson, N.: Anonymity Loves Company: Usability and the

Network Effect. In: WEIS (2006),
http://freehaven.net/doc/wupss04/usability.pdf

[9] Dingledine, R., Mathewson, N.: Tor Protocol Specification,
https://gitweb.torproject.org/torspec.git?a=
blob_plain;hb=HEAD;f=torspec.txt

[10] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: USENIX Security. USENIX (2004),
http://static.usenix.org/event/sec04/tech/full_papers/
dingledine/dingledine.pdf

[11] Electronic Frontier Foundation. HTTPS Everywhere (2013),
https://www.eff.org/https-everywhere

[12] Goldberg, I.: On the Security of the Tor Authentication Protocol. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 316–331. Springer, Heidelberg
(2006), http://freehaven.net/anonbib/cache/tap:pet2006.pdf

[13] Haim, D.: SocksiPy - A Python SOCKS client module (2006),
http://socksipy.sourceforge.net

[14] Hodges, J., Jackson, C., Barth, A.: HTTP Strict Transport Security, HSTS (2012),
https://tools.ietf.org/html/rfc6797

[15] Hodges, J., Jackson, C., Barth, A.: RFC 6797: HTTP Strict Transport Security,
HSTS (2012), https://tools.ietf.org/html/rfc6797

[16] Huber, M., Mulazzani, M., Weippl, E.: Tor HTTP Usage and Information Leakage.
In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp.
245–255. Springer, Heidelberg (2010),
http://freehaven.net/anonbib/cache/huber2010tor.pdf

[17] InformAction. NoScript (2013), http://noscript.net
[18] Known Bad Relays,

https://trac.torproject.org/projects/tor/wiki/doc/badRelays
[19] Thoughtcrime Labs. Convergence (2011), http://convergence.io
[20] Langley, A.: Public key pinning (2011),

https://www.imperialviolet.org/2011/05/04/pinning.html
[21] Lowe, G., Winters, P., Marcus, M.L.: The Great DNS Wall of China. Tech. rep.

New York University (2007),
http://cs.nyu.edu/~pcw216/work/nds/final.pdf

[22] Marlinspike, M.: sslstrip,
http://www.thoughtcrime.org/software/sslstrip/

[23] Marlinspike, M.: tortunnel,
http://www.thoughtcrime.org/software/tortunnel/

[24] McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.C.: Shining Light in
Dark Places: Understanding the Tor Network. In: Borisov, N., Goldberg, I. (eds.)
PETS 2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008),
http://homes.cs.washington.edu/˜yoshi/papers/
Tor/PETS2008_37.pdf

http://www.cs.columbia.edu/~mikepo/papers/tordecoys.raid11.pdf
http://www.cs.columbia.edu/~mikepo/papers/tordecoys.raid11.pdf
http://www.crossbear.org
http://archives.seul.org/or/talk/Aug-2006/msg00262.html
http://freehaven.net/doc/wupss04/usability.pdf
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=torspec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=torspec.txt
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf
https://www.eff.org/https-everywhere
http://freehaven.net/anonbib/cache/tap:pet2006.pdf
http://socksipy.sourceforge.net
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
http://freehaven.net/anonbib/cache/huber2010tor.pdf
http://noscript.net
 https://trac.torproject.org/projects/tor/wiki/doc/badRelays
http://convergence.io
https://www.imperialviolet.org/2011/05/04/pinning.html
http://cs.nyu.edu/~pcw216/work/nds/final.pdf
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/tortunnel/
http://homes.cs.washington.edu/~yoshi/papers/Tor/PETS2008_37.pdf
http://homes.cs.washington.edu/~yoshi/papers/Tor/PETS2008_37.pdf

330 P. Winter et al.

[25] Paul, R.: Security expert used Tor to collect government e-mail passwords (2007),
http://arstechnica.com/security/2007/09/security-expert-
used-tor-to-collect-government-e-mail-passwords/

[26] Perry, M., Clark, E., Murdoch, S.: The Design and Implementation of the Tor
Browser [DRAFT] (2013),
https://www.torproject.org/projects/torbrowser/design/

[27] SkullSecurity. Passwords (2011),
https://wiki.skullsecurity.org/Passwords

[28] SoftCom, Inc. Email Hosting Services, http://mail2web.com
[29] The Tor Project. ExoneraTor, https://exonerator.torproject.org
[30] The Tor Project. Relays with Exit, Fast, Guard, Stable, and HSDir flags,

https://metrics.torproject.org/network.html#relayflags
[31] The Tor Project. Snakes on a Tor, https://gitweb.torproject.org/

torflow.git/tree/HEAD:/NetworkScanners/ExitAuthority
[32] The Tor Project. Stem Docs, https://stem.torproject.org
[33] The Tor Project. TC: A Tor control protocol (Version 1),

https://gitweb.torproject.org/torspec.git/
blob/HEAD:/control-spec.txt

[34] TOR exit-node doing MITM attacks, http://www.teamfurry.com/
wordpress/2007/11/20/tor-exit-node-doing-mitmattacks

[35] Torscanner, https://code.google.com/p/torscanner/
[36] Torsocks: use socks-friendly applications with Tor,

https://code.google.com/p/torsocks/
[37] Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-

style Host Authentication with Multi-Path Probing. In: ATC. USENIX (2008),
http://perspectivessecurity.files.wordpress.com/
2011/07/perspectives_usenix08.pdf

A Malicious X.509 Root Certificate
Below, the root certificate which was shared by all Russian and the single U.S.
exit relay is shown. While the domain authority.com does exist as of May 2014,
it appears to be unrelated to the CA “Main Authority”, the issuer.
1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 16517615612733694071 (0xe53a5be2bd702077)
5 Signature Algorithm: sha1WithRSAEncryption
6 Issuer: C=US, ST=Nevada, L=Newbury, O=Main Authority,
7 OU=Certificate Management,
8 CN=main.authority.com/emailAddress=cert@authority.com
9 Validity

10 Not Before: Feb 12 08:13:07 2013 GMT
11 Not After : Feb 10 08:13:07 2023 GMT
12 Subject: C=US, ST=Nevada, L=Newbury, O=Main Authority,
13 OU=Certificate Management,
14 CN=main.authority.com/emailAddress=cert@authority.com
15 Subject Public Key Info:
16 Public Key Algorithm: rsaEncryption
17 Public-Key: (1024 bit)
18 Modulus:
19 00:da:5d:5f:06:06:dc:8e:f1:8c:70:b1:58:12:0a:
20 41:0e:b9:23:cc:0e:6f:bc:22:5a:05:12:09:cf:ac:
21 85:9d:95:2c:3a:93:5d:c9:04:c9:4e:72:15:6a:10:
22 f1:b6:cd:e4:8e:ad:5a:7f:1e:d2:b5:a7:13:e9:87:

http://arstechnica.com/security/2007/09/security-expert-used-tor-to-collect-government-e-mail-passwords/
http://arstechnica.com/security/2007/09/security-expert-used-tor-to-collect-government-e-mail-passwords/
https://www.torproject.org/projects/torbrowser/design/
https://wiki.skullsecurity.org/Passwords
http://mail2web.com
https://exonerator.torproject.org
https://metrics.torproject.org/network.html#relayflags
https://gitweb.torproject.org/torflow.git/tree/HEAD:/NetworkScanners/ExitAuthority
https://gitweb.torproject.org/torflow.git/tree/HEAD:/NetworkScanners/ExitAuthority
https://stem.torproject.org
https://gitweb.torproject.org/torspec.git/blob/HEAD:/control-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/control-spec.txt
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitmattacks
http://www.teamfurry.com/wordpress/2007/11/20/tor-exit-node-doing-mitmattacks
https://code.google.com/p/torscanner/
https://code.google.com/p/torsocks/
http://perspectivessecurity.files.wordpress.com/2011/07/perspectives_usenix08.pdf
http://perspectivessecurity.files.wordpress.com/2011/07/perspectives_usenix08.pdf
authority.com

Spoiled Onions: Exposing Malicious Tor Exit Relays 331

23 d8:aa:a0:24:15:24:84:37:d1:69:8e:31:8f:5c:2e:
24 92:e3:f4:9c:c3:bc:18:7d:cf:b7:ba:b2:5b:32:61:
25 64:05:cd:1f:c3:b5:28:e1:f5:a5:1c:35:db:0f:e8:
26 c3:1d:e3:e3:33:9c:95:61:6d:b7:a6:ad:de:2b:0d:
27 d2:88:07:5f:63:0d:9c:1e:cf
28 Exponent: 65537 (0x10001)
29 X509v3 extensions:
30 X509v3 Subject Key Identifier:
31 07:42:E0:52:A7:DC:A5:C5:0F:C5:
32 AF:03:56:CD:EB:42:8D:96:00:D6
33 X509v3 Authority Key Identifier:
34 keyid:07:42:E0:52:A7:DC:A5:C5:0F:C5:
35 AF:03:56:CD:EB:42:8D:96:00:D6
36 DirName:/C=US/ST=Nevada/L=Newbury/O=Main Authority
37 /OU=Certificate Management
38 /CN=main.authority.com/emailAddress=cert@authority.com
39 serial:E5:3A:5B:E2:BD:70:20:77
40
41 X509v3 Basic Constraints:
42 CA:TRUE
43 Signature Algorithm: sha1WithRSAEncryption
44 23:55:73:1b:5c:77:e4:4b:14:d7:71:b4:09:11:4c:ed:2d:08:
45 ae:7e:37:21:2e:a7:a0:49:6f:d1:9f:c8:21:77:76:55:71:f9:
46 8c:7b:2c:e8:a9:ea:7f:2f:98:f7:45:44:52:b5:46:a4:09:4b:
47 ce:88:90:bd:28:ed:05:8c:b6:14:79:a0:f3:d3:1f:30:d6:59:
48 5c:dd:e6:e6:cd:3a:a4:69:8f:2d:0c:49:e7:df:01:52:b3:34:
49 38:97:c5:9a:c3:fa:f3:61:b8:89:0f:d2:d9:a5:48:e6:7b:67:
50 48:4a:72:3f:da:28:3e:65:bf:7a:c2:96:27:dd:c0:1a:ea:51:
51 f5:09

B Injected HTML Code
The following HTML code was injected by the relay 5A2A51D4 (see Table 1 and
Table 2). It was appended right in front of the closing HTML tag.
1

2 <img src="http://111.251.157.184/pics.cgi"

3 width="1" height="1">

When requesting the image link inside the HTML code, the server responds
with another HTML document. The full HTTP response is shown below.
1 HTTP/1.1 200 OK

2 Date: Tue, 14 Jan 2014 17:12:08 GMT

3 Server: Apache/2.2.22 (Ubuntu)

4 Vary: Accept-Encoding

5 Transfer-Encoding: chunked

6 Content-Type: text/html

7
8
9 <HTML>

10 <HEAD>

11 <TITLE>No Title</TITLE>

12 </HEAD>

13 <BODY>

14
15 </BODY>

16 </HTML>

	Spoiled Onions: Exposing Malicious Tor Exit Relays
	1 Introduction
	2 Background
	2.1 Related Work

	3 Monitoring Tor Exit Relays
	3.1 The Design of
	3.2 The Design of

	4 Experimental Results
	4.1 Detecting MitM Attacks with
	4.2 Detecting Traffic Sniffing with

	5 Discussion
	5.1 Data Set Overlap
	5.2 The “Russian HTTPS Group”
	5.3 The “International Sniffer Group”
	5.4 The “Indian Sniffer Group”
	5.5 Who Reused the Bait Credentials?
	5.6 Human Errors During Reconnections
	5.7 Implications for Tor Users
	5.8 Limitations
	5.9 Ethical Aspects

	6 Thwarting HTTPS MitM Attacks
	6.1 Threat Model
	6.2 Multi Circuit Certificate Verification
	6.3 Extension Design
	6.4 Limitations

	7 Conclusions
	References

