
1

HYPHAE: Social Secret Sharing
Isis Agora Lovecruft Henry de Valence

isis@patternsinthevoid.net hdevalence@hdevalence.ca

Provisional Draft, 2017-04-21

F

Abstract—The Tor network allows millions of people to access the
Internet anonymously. Many people cannot access the Internet freely, and
use the Tor network to bypass censorship. Many powerful adversaries,
including state-level censors, therefore attempt to block access to the
Tor network. To access Tor where it is blocked, users can connect to Tor
bridges, secret entry points to the Tor network. The bridge distribution
problem is to distribute the secret bridge addresses only to legitimate
users, and not to censors – who have far greater resources than any
single legitimate user. The Proximax and rBridge schemes propose using
a social graph to distinguish legitimate users.

In this document, we review historical censorship of the Tor Network
and the Proximax and rBridge proposals for bridge distribution. We also
review an anonymous credential scheme proposed by Chase, Meiklejohn,
and Zaverucha. We describe HYPHAE, a redesign of the rBridge concept
using these credentials, as well as an anonymous micropayment system
that may be of independent interest.

1 INTRODUCTION

“Please check the box to ensure you are not a robot”
is a phrase all-too-often seen in user interfaces for the
distribution of resources which require defenses against
spammers, scrapers, Sybil attacks, and the like. The problem
is to distinguish legitimate users from illegitimate users
– to find a distinguishing property held only (or at least
primarily) by legitimate users, and not by illegitimate ones.
For instance, many services distinguish by ability to solve
a CAPTCHA [VAMM+

08]; by monitoring user requests
to determine patterns of “malicious” activity [Pri16]; by
possession of a scarce resource, such as a phone number;
or by ability to pay a computational cost, as in proof-of-work
systems. Less common suggestions include blockchain-based
micropayments, state-issued “e-Passports,” or possession of
a trusted platform module [HG11].

A choice of distinguisher is a choice, implicitly or explic-
itly, of a conceptual model of the capabilities of legitimate
and of illegitimate users. This model is often inadequate.
For instance, CAPTCHAs rely on a conceptualization of
legitimate users as “humans” and illegitimate users as
“robots,” as if scrapers were not controlled by humans, and
as if humans did not use robots (their User-Agents) to
make requests. Legitimate users who use unusual robots,
such as a screen reader for the visually impaired, or who
are not considered “human,” such as those unable to read
English-language instructions, are out of luck.

Sophisticated adversaries make choosing a good distin-
guisher much more difficult. Our resource is the addresses
of Tor bridges, secret entrances to the Tor network; our

adversaries are state-level censors seeking to learn the bridge
addresses and block access to Tor. These adversaries have
capabilities far beyond those of any single legitimate user. To
distinguish legitimate users, therefore, Proximax [MML11]
and rBridge [WLBH13] suggest using a social graph. Censors
are more capable, more determined, and have more resources
and more human hours than any legitimate user. They can
solve CAPTCHAs, purchase scarce resources, or solve proofs-
of-work. But legitimate users have friends.

In the rBridge proposal, users are assigned bridges, and
earn reputation credits as long as their bridges remain
unblocked. When one of a user’s bridges is blocked, they
can obtain a new bridge as long as they have a reputation
for good behaviour. Users with good reputation can invite
their friends into the system. Censors who attempt to enter
the system and block bridges they receive lock themselves
out of getting new bridges. The optimal strategy for a censor,
then, is to enumerate bridges over time before blocking all of
them at once; under reasonable assumptions, the majority of
legitimate users remain unblocked.

However, the proposed rBridge protocol has several
shortcomings, as described in Section 7. We therefore propose
a redesign with the same overall concept, but with all
cryptographic primitives and protocols replaced. We call our
scheme Hyphae: although the social graph of legitimate users
is a complex, interconnected, rhizomatic web, the bridge
distributor sees only disconnected strands.

1.1 Organization

In Section 2, we provide a detailed history of attempts
to censor access to the Tor network, as well as attempts to
counter that censorship; readers familiar with this history can
skip Section 2. In Section 3, we review two previous proposals
for social bridge distribution, Proximax and rBridge; readers
familiar with these can skip Section 3. In Section 4, we review
the anonymous credential scheme proposed in [CMZ14]. In
Section 5, we use these credentials to build an anonymous
micropayment scheme. In Section 6, we describe our redesign
of the rBridge concept, which we call Hyphae. In Section 7,
we compare Hyphae to rBridge. In Section 8, we describe
our implementation of Hyphae and its performance. Finally,
Appendix A gives explicit descriptions of the Hyphae
protocol and Appendix B describes an API.

All implementations provided are open-sourced, freely
available, and licenced in the public domain. ♥



2

1.2 Notation

We use the following notation. G denotes a group of
prime order `, written additively. Since we model G using an
elliptic curve group, we choose ` rather than p or q to avoid
confusion between the scalars Z/`Z and the base field for
the elliptic curve.

Group elements (points) are denoted with capital letters,
A, B, P, Q, etc. Scalars in Z/`Z are denoted with lower-case
letters m, n, b, u, etc. System parameters are denoted by greek
letters α, β, ρ, etc.

We use Camenisch-Stadler [CS97] notation for zero-
knowledge proofs: πlabel = NIPK{(x, y, . . .) : statements}
denotes that “πlabel is a non-interactive proof-of-knowledge
of secrets x, y, . . ., which statisfy some statements, in zero-
knowledge.”

2 CENSORSHIP OF THE TOR NETWORK

The Tor network is a low-latency anonymity network.
Servers in the network are called relays (or nodes). The
Tor network is semi-centralised: relays submit descriptors
containing connection information, cryptographic keys, and
other statistics and settings to a set of privileged relays, called
Directory Authorities, which vote upon their views of relays
in the network. The Directory Authorities then distribute a
single, authoritative view of relays in the network, called a
consensus, to clients attempting to connect to the network.
After receiving the consensus, a client builds a path, called
a circuit, through the network by encrypting their traffic to
each relay (or hop) in the circuit in layers, like an onion: hence
the names onion encryption and onion routing. This circuit-layer
is telescoping, end-to-end encryption, and it lies inside an
outer, superencrypting link-layer, which is implemented as
point-to-point (i.e. non-telescoped) TLS connections between
relays.

2.1 IP- and DNS-based blocking

Because the Tor consensus is publicly distributed, there is
nothing preventing a censor from simply blocking client
connections to the Directory Authorities themselves, or
downloading the consensus and blocking connections to
all the relays in it.

To combat censorship of the Tor network, Mathewson and
Digledine introduced introduced Tor bridge relays, or more
succinctly, bridges [DM06]. Bridges are Tor relays which are
not listed in the consensus and are thus secret ingress points
to the Tor network. This system requires a bridge line to be
distributed out-of-band by a bridge distributor. The bridge line
contains the information necessary to connect to a bridge,
which includes the IP address and port, and optionally key
material or other configuration data.

The introduction of Tor bridges eventually forced censors
to switch to deep packet inspection (DPI) to continue
censoring Tor effectively. In 2008, China began blocking
access to The Tor Project’s website by conducting a substring
search for torproject.org on unencrypted HTTP traffic
[WC12], which was trivially circumventable by requiring
users to use Transport Layer Security (TLS) when accessing
the website. The next stage of the arms race came in 2009,
when China upgraded their DPI infrastructure to conduct

IP-based blocking of all public relays in the Tor consensus
[WC12]. The solution to this move, Tor bridges, had already
existed for several years. In March 2011, a significant decrease
from users in China to Tor bridges occurred [WC12]. While
the mechanism is as-yet unknown, [Loe11] suggests this to
be the result of Chinese network administrators manually
discovering some of the most popular Tor bridges and adding
specific DPI rules to block those bridge by IP.

2.2 TLS Fingerprinting and Active Probing

Eventually, many adversaries’ infrastructures were im-
proved to conduct DPI using more sophisticated distinguish-
ers, which were frequently related to Tor’s idiosyncratic
usage of the TLS protocol.

In its original implementation, Tor used TLS in ways
which presented adversaries with trivial distinguishers:
disabling all unused certificate fields and extensions, sending
an unique client ciphersuite list indicating actual cipher
preferences, sending a two-certificate chain containing a
long-term server identity key and an ephemeral link-key,
and conducting the ephemeral agreement with the 1024-
bit Diffie-Hellman (DH) group specified in RFC2409 §6.2
[Mat12]. In 2008, Tor switched to using the same ciphersuite
list as Firefox 3 in order to “blend in” [Din08], which required
feigning support for the nonstandard SSL3_RSA_FIPS_-
WITH_3DES_EDE_CBC_SHA cipher [Mat12]. At this time,
Tor also altered relay link-handshake behaviour to instead
send a single-certificate—rather than a two-certificate chain—
and then have clients immediately renegotiate [Mat12]. This
usage of TLS renegotiation caused further problems a year
later: “When Marsh Ray’s attack against renegotiation came
out in 2009, and everybody who could possibly turn off
renegotiation did so, our use of renegotiation stood out even
more, especially since we had to keep doing it even when
built with versions of OpenSSL that didn’t support RFC 5746.”
[Mat12]

In October 2010, an anonymous user posted packet
captures on Tor’s bug tracker which showed that China
had begun actively probing to distinguish Tor bridge user’s
traffic, pretending to speak the Tor protocol all the way up
until the client’s first BEGIN_DIR command (a tunnelled
directory request for information on a relay, used to fetch
the bridge’s descriptor) and then “hanging up” [APKD10]
[WL12]. Extensive testing revealed various curiosities in the
configuration and behaviours of the Great Firewall of China,
including that neither OpenSSL s_client connections nor
excessively unordinary certifications would trigger an active
probe from a the GFW [Wil11]. In December 2011, the Great
Firewall of China began censoring connections to the Tor
Network with a much cheaper distinguisher: Tor’s unique
TLS ciphersuite list as sent in the CLIENT_HELLO [KMD+

11].
The solution, implemented in 2012, was automated retrieval
of the current Firefox TLS ciphersuite preference list, by
regexing over the directories of Firefox and OpenSSL source-
code [Din12] [MF17].

At the beginning of 2011, Iran had also begun block-
ing Tor, based on the above-mentioned unusual choice of
RFC2409 Diffie-Hellman parameters within the link-layer
TLS handshake. The Tor Project developers responded by
switching to the same DH parameters as were in currently



3

use by Apache’s mod_ssl [Din11a]. The arms race with
Iran continued throughout 2011, with Iran later updating
their DPI infrastructure to distinguish traffic by the unusual
expiration times of Tor’s TLS certificates, and the Tor Project
developers promptly releasing a new version with more real-
istic certificate expiration timestamps in the SERVER_HELLO
[Din11c] [Din11b].

In June 2012, Ethiopia began blocking all TLS connections,
including Tor traffic, by matching on the TLS1_TXT_DHE_-
RSA_WITH_AES_256_SHA string in the CLIENT_HELLO
and dropping those packets [KSWF12]. Amusingly, if the
client split the ciphersuite list across TLS cells [Win12a], or
chose TLS1_TXT_DHE_RSA_WITH_AES_128_SHA instead
[LLKW12], Ethiopia’s DPI infrastructure was again un-
able to censor the traffic [Win12b]. Curiously, at the
same time that Ethopia had begun fingerprinting the TLS
CLIENT_HELLO, Kazakhstan followed suit, using the same
fingerprint from Ethopia as well as an unconfirmed server-
side TLS HELLO_DONE fingerprint. The unconfirmed finger-
print ceased to work to censor Tor in Kazakhstan soon after,
presumably because Kazakhstan mis-re-configured their DPI
infrastructure [SKWF12].

Finally, another mechanism to enumerate bridges was
described in a 2012 paper [LLY+

12]. Since bridge users select
randomly from public Tor relays when constructing circuits,
a middle relay can compare incoming connections against
the public consensus to learn the addresses of bridges. The
solution, originally proposed in 2011 along with a description
of the problem, is bridge guards [ML15]. Tor’s loose-source
routing allows a relay to add arbitrary hops in the middle
of a Tor circuit; bridges should choose a guard relay and
relay their traffic through it. This feature is currently in
development.

2.3 Pluggable Transports
The numerous list of distinguishers in TLS implementa-

tion and usage for Tor client traffic in the preceding section
is by no means exhaustive. The domain names presented
by bridges in their Tor TLS certificates are derived from
the certificate public key, and as such are random. Another
potential traffic distinguisher is the characteristic packet-
size distribution, due to Tor’s 512-byte cell size. In an
effort to avoid these hazards, Kadianakis proposed pluggable
transports, or PTs [KMDA16]. The original idea of pluggable
transports was to provide a composable, or “pluggable”, link
layer which provided traffic obfuscation. The first proof-of-
concept pluggable transport protocol, obfs2 [KM11b], used
encryption to achieve computational indistinguishability
from random, however for the goal of mere obfuscation rather
than computational hiding, which was provided by the circuit-
layer encryption.

The client and server, upon connecting, each sent the other
a cryptographic seed in the clear. Both parties concatenated
the two seeds together, hashed with SHA-256 a fixed number
of times, and used the result as an AES-128 key and
initialisation vector (IV) [KM11a]. While it would have been
possible for a censor conducting DPI to re-derive the key and
decrypt the obfs2 traffic to reveal the circuit-layer encryption,
without a distinguisher to identify obfs2 traffic, their DPI
infrastructure would have had to do this work for every
unidentified connection.

The intended long-term goal was to build pluggable trans-
ports which mimicked, and hopefully were indistinguishable
from, other protocols, in order to use other Internet traffic
as cover traffic. For instance, one could imagine a PT which
might make Tor traffic look like HTTP traffic.

However, most other Internet traffic, such as HTTP
browsing, has incredible statistical complexity, and it seems
implausible that it is possible to mimic, e.g., a human brows-
ing the web without trivial distinguishers. This intuition,
combined with several unsuccessful attempts in at protocol
mimicry, suggest that pluggable transports which attempt
protocol mimicry will always have distinguishers, in much
the same way that Tor was never fooling anyone when it
tried to look like Apache.

In contrast to efforts at protocol mimicry, the obfs4

[Ang14] pluggable transport protocol tries to look like
random data, by using Tor’s NTor circuit-layer handshake
[GSU12] with public keys obfuscated to appear as uni-
formly random 32-byte strings, via the Elligator 2 mapping
[BHKL13]. Once an elliptic curve Diffie-Hellman (ECDH) key
exchange occurs, the obfs4 protocol wraps its traffic inside a
layer of authenticated encryption.

We believe that obfs4, or any other pluggable transport
which

1) uses a handshake design which is uniformly random
and without distinguishers across multiple connec-
tions;

2) uses some pre-shared key material for authentication
to the server; and

3) (optionally) encrypts to the pre-shared key, starting
with the client’s first message;

is essentially the ideal design for obfuscation.

2.4 The Bridge Distribution Problem

A pluggable transport can make traffic indistinguishable
from random, but it cannot hide the destination of the traffic.
Using pluggable transports to avoid censorship therefore
requires preventing the censor from learning the addresses
of the bridges. However, legitimate users should be able to
learn the addresses of bridges (and other associated data) in
order to bypass censorship. Distinguishing legitimate users
from censors, and distributing secrets only to legitimate
users, is the bridge distribution problem.

Tor bridges are historically distributed via a web interface
which asks the user to solve a custom-implementation
CAPTCHA, as well as via an email interface [LMFL13]. Of
course, state-level censors are perfectly capable of purchasing
email addresses in bulk, as well as circumventing a simple
CAPTCHA. Several proof-of-work systems have been pro-
posed informally over the last few years, including requiring
clients to submit micropayments in some cryptocurrency,
using one-out-of-many proofs [GK15], using proof-of-stake
systems, and using proofs-of-work with asymmetric difficul-
ties for the client and server [BK16].

However, as noted in the introduction, none of these
are adequate methods to distinguish legitimate users from
censors, who have more human resources, more computa-
tional power, more money, and more resolve than any single
legitimate user. In contrast, the Proximax [MML11] and



4

rBridge [WLBH13] designs attempt to distinguish legitimate
users from censors using something that should be easy
for legitimate users and difficult for censors: the ability to
make friends. For this reason, they attempt to use placement
in a social graph, and a reputation system, to distinguish
legitimate users from censors.

3 PREVIOUS BRIDGE DISTRIBUTION SCHEMES

Previous work towards solving the distribution problem
can be divided into roughly two categories: that which
attempts to solve the problem directly, and that which
attempts to sidestep the problem using ephemeral bridges.

3.1 Orthogonal problems and solutions
FlashProxy was a service run at Stanford University

which used Javascript and the WebSockets API to turn
visitors to a site into “flash proxies,” or ephemeral channels
for other censored users [Fif17a]. The FlashProxy authors
defined a rendezvous protocol as follows:

Definition 1 (Rendezvous Protocol). “A rendezvous protocol
lets a user in the censored region send and receive a small amount
of information (a few bytes) from the circumvention system to
outside the censored region, for the purpose of introducing a user
to a proxy. Rendezvous protocols are designed for low-rate traffic
and are intended to be difficult to block.” [FHE+12]

The Snowflake pluggable transport was later developed
as an effort to use the FlashProxy concept with an improved
NAT traversal algorithm using WebRTC [Han17].

FlashProxy and Snowflake attempt to sidestep the bridge
distribution problem: if there is no way to distinguish
legitimate users from censors, then one can, at least, attempt
to distribute secrets faster than the censor can block them
[FHE+

12].
Domain fronting is a circumvention technique that hides

the actual remote endpoint from a censor by tunneling actual
requests in the Host: headers inside HTTPS requests to
a third-party domain. [FLH+

15] The third-party should be
economically infeasible for the censor to block, e.g. a large
content distribution netork (CDN) which delivers others
services, such that blocking it would damage commercial
viability. In the context of Tor bridges, the domain fronting
technique has been used in the meek pluggable transport,
which tunnels Tor client traffic through Google AppEngine,
Microsoft Azure, and Amazon S3 to a Tor bridge [Fif17b].

However, using domain fronting to tunnel the client traffic
itself has many problems, including poor scalability from
high financial costs, and a reliance on the beneficence of large
CDN providers. Building on the techniques of FlashProxy
and Snowflake [Han16], we use domain fronting as our
rendezvous protocol, but not for client traffic.

3.2 Proximax
Proximax [MML11] introduced two key ideas: social

distribution and bevaviour-based incentivisation. In Proximax,
some privileged subset of users are designated as registered
users. Registered users are assigned proxies, which they
distribute to their friends, who distribute them to their
friends, and so on. The number of end users for a given

proxy and how long the proxy lasts before being blocked
determine the efficacy of the proxy’s corresponding registered
user. Registered users with higher efficacy are then given
more proxy resources, and those with the highest efficacy
are given the ability to invite new registered users.

However, if a proxy is blocked, Proximax has the “feature”
of locking out the entire tree of users beneath that proxy’s
registered user: “Similar to the RICO Act in the legal system,
once a subnode is suspicious the whole subtree is equally
suspicious.” [MML11] The wisdom of modelling software
systems on U.S. anti-racketeering law aside, Proximax does
not attempt to preserve privacy of registered users, or the
social connections between users sharing the same proxy, all
of whom are linkable to a particular registered user.

3.3 rBridge

In the rBridge scheme [WLBH13], users are given bridges
and a reputation score. While a user’s bridges remain in
use and unblocked, the user earns additional points for this
good behaviour. Users may purchase new bridges with their
points. Users with a sufficiently good reputation may receive
invite tokens from the distributor, allowing them to invite
their friends.

The first key idea introduced in rBridge, extending
Proximax’s concepts of social distribution combined with
behaviour-based incentivisation, is that of utilising a user
reputation system. Where in Proximax a user is incentivised
to invite a new user based on the predicted behaviour of
the new user, and elimination from the system is based on
social ties, the opposite is true of rBridge: invites are based
solely on social ties and continued participation in the system
is based on demonstration of good-behaviour. By blocking
bridges, a censor forfeits their ability to earn points. This
forces a censor to trade off more extensive enumeration of
bridges with more extensive blocking of the bridges it learns.

The rBridge authors model three censorship strategies:
aggressive blocking, wherein a censor immediately blocks all
bridges they learn; conservative blocking, wherein a censor
keeps some bridges online to earn points, while blocking
others; and event-driven blocking, wherein a censor attempts
to learn many bridges over time, before blocking all of them
at some critical event. The most effective strategy for a censor
is event-driven blocking, but under the assumption that
only a small fraction of the initial userbase of the system is
malicious, the majority of users maintain access to bridges.

The second key idea introduced in rBridge is a protocol
for implementing the reputation-based incentive structure
with privacy preservation, since it would be obviously
unacceptable for the distributor to actually collect and
maintain data on bridge users in censored areas. We discuss
the cryptographic design of this protocol in Section 7.

We use the term rBridge concept to refer to the incentive
structure and overall system design of rBridge described in
Section 4 of [WLBH13], and use the term rBridge protocol to
refer to the privacy-preserving protocol described in Section
5 of [WLBH13]. Hyphae, described in Section 6 of this paper,
makes slight changes to the rBridge concept while replacing
the rBridge protocol.



5

4 KEYED-VERIFICATION ANONYMOUS CREDEN-
TIALS FROM ALGEBRAIC MACS

In [CMZ14], Chase, Meiklejohn, and Zaverucha proposed
an efficient keyed-verification anonymous credential scheme.
In contrast to a setting where a user may need to present
a credential to multiple parties or other users, a keyed-
verification credential can only be verified by the issuer of
the credential. As the authors note, this is suitable for “any
setting in which the party controlling access to a resource
also manages the accounts of authorized parties,” and allows
the use of efficient symmetric primitives to construct the
credentials.

In particular, they describe two algebraic message authen-
tication codes (MACs) and use each of them to construct
keyed-verification anonymous credentials. The first MAC is a
generalization of an algebraic MAC described by Dodis, Kiltz,
Pietrzak, and Wichs [DKPW12], and has a security proof in
the generic group model (GGM). The second is slightly less
efficient, but admits a security proof under the decisional
Diffie-Hellman (DDH) assumption. We choose the first, and
repeat the construction of [CMZ14] here.

4.1 The Algebraic MAC

Fix a group G of prime order `, written additively, and
let A, B be generators of G so that logB(A) is unknown. An
issuer’s secret key is the vector

(x̃0, x0, x1, . . . , xn)
$←− (Z/`Z)n+2;

they may also publish issuer parameters

(X1, . . . , Xn)← (x1 A, . . . , xn A),
X0 ← x0B + x̃0 A,

which are used later to construct anonymous credentials.
The MAC works as follows. To tag a vector of attributes

(m1, . . . , mn) ∈ (Z/`Z)n, the issuer selects b $←− Z/`Z and
computes

P← bB

Q←
n

∑
i=1

ximiP =

(
n

∑
i=1

bximi

)
B.

The tag is then (P, Q). To verify a purported tag (P, Q) on
attributes (m1, . . . , mn), the issuer checks that the nonce P 6=
0, then recomputes the MAC Q′ ← ∑i ximiP and checks that
Q = Q′. Notice that although the attributes are authenticated,
the tag itself is malleable: (tP, tQ) is a valid tag for the same
attributes for any non-zero t ∈ Z/`Z.

4.2 Credential Issuance

To issue a credential with attributes (m1, . . . , mn) ∈
(Z/`Z)n, the issuer creates a tag (P, Q) on those attributes,

and returns the tag, together with a proof that the tag was
created correctly:

πClearIssue = NIPK{(x̃0, x0, x1, . . . , xn) :
Xi = xi A ∀i = 1, . . . , n

∧ X0 = x0B + x̃0 A

∧ Q = x0P +
n

∑
i=1

xi(miP)}.

The user accepts the credential (P, Q, m1, . . . , mn) if πissuance
verifies. This ensures that a dishonest issuer cannot segment
users by issuing to different users credentials with respect to
different secret keys.

4.3 Blinded Issuance
It is also possible for the user to request issuance of a

credential on attributes hidden from the issuer, as follows.
Let the set of hidden indices be H ⊆ [1, . . . , n], and let Hc

be its complement, the set of non-hidden indices, so that
H∪Hc = [1, . . . , n].

First, the user generates an ephemeral ElGamal keypair
(d, D) as d $←− Z/`Z, D ← dB. For each i ∈ H, the user then
computes ElGamal encryptions

ei
$←− Z/`Z,

EncD(miB)← (eiB, miB + eiD).

The user then sends D, {(i, mi)}i/∈H, and
{(i, EncD(miB))}i∈H to the issuer, as well as a proof
that the hidden attributes were correctly computed:

πUserBlinding = NIPK{(d, {(ei, mi)}i∈H) :

EncD(miB) = (eiB, miB + eiD) ∀i ∈ H
∧ D = dB}.

The issuer then verifies πUserBlinding, and uses the homo-
morphic property of ElGamal ciphertexts to compute an
encryption of the MAC, as follows. First, the issuer selects a
nonce:

b $←− Z/`Z, P← bB.

The issuer then computes a partial MAC on the revealed
attributes

QHc ←
(

x0 + ∑
i/∈H

mixi

)
P,

and encrypts it using randomness s $←− Z/`Z to get

EncD(QHc )← (sB, QHc + sD).

Let

QH =

(
∑

i∈H
mixi

)
P

be the partial MAC on the hidden attributes, which the
issuer cannot compute directly. Instead, the issuer uses the
EncD(miB) to compute

EncD(QH)← ∑
i∈H

xib EncD(miB),

and adds the two encryptions to get

EncD(Q)← EncD(QH) + EncD(QHc ) = EncD(Q),



6

where Q = (x0 + ∑i ximi)P = QH + QHc .
To prove to the user that all this was done correctly, the

issuer constructs the proof

πBlindIssue = NIPK{(x̃0, x0, x1, . . . , xn, s, b, {ti}i∈H) :
Xi = xi A ∀i = 1, . . . , n

∧ X0 = x0B + x̃0 A
∧ P = bB
∧ Ti = bXi ∧ Ti = ti A ∀i ∈ H
∧ EncD(Q)[0] = sB + ∑

i∈H
ti EncD(miB)[0]

∧ EncD(Q)[1] = sD + ∑
i∈H

ti EncD(miB)[1]

+ x0P + ∑
i/∈H

xi(miP)},

where ti = bxi, Ti = ti A are auxiliary variables introduced
to avoid proving statements involving secret products.

The issuer then sends P, EncD(Q), Ti, and πBlindIssue to
the user, who verifies the proof and decrypts EncD(Q) to
obtain the credential (P, Q, m1, . . . , mn).

4.4 Credential Presentation

To present a credential (P0, Q0, m1, . . . , mn) with an inital
tag (P0, Q0) to the issuer while hiding some subset of the
attributes indexed by H ⊆ [1, . . . , n], the user proceeds as
follows. First, the user uses the malleability of the tag to
re-randomise their credential by computing

t $←− Z/`Z (P, Q)← (tP0, tQ0),

so that the issuer cannot trivially link credential presentations.
The user then forms Pedersen commitments [Ped01] to the
hidden attributes

zi
$←− Z/`Z, Cmi ← miP + zi A, ∀i ∈ H,

a Pedersen commitment to the MAC

zQ
$←− Z/`Z, CQ ← Q + zQ A,

and an error factor

V ← ∑
i∈H

ziXi − zQ A

(using the issuer parameters Xi). Finally, the user creates a
proof that these were generated correctly

πCredShow = NIPK{({(mi, zi)}i∈H, zQ) :
Cmi = miP + zi A ∀i ∈ H

∧ V = ∑
i∈H

ziXi − zQ A},

and sends {(i, mi)}i/∈H, {(i, Cmi )}i∈H, CQ, and πCredShow to
the issuer. The user may also optionally include additional
statements about the attributes mi in the proof πCredShow.

To verify the credential presentation, the issuer attempts
to recompute the MAC on the committed attributes and
compares to the commitment to the MAC:

V′ ←
(

x0 + ∑
i/∈H

ximi

)
P + ∑

i∈H
xiCmi − CQ.

If both parties are honest,

V′ =

(
x0 + ∑

i/∈H
ximi

)
P

+ ∑
i∈H

xi(miP + zi A)−Q− zQ A

=

(
x0 +

n

∑
i=1

ximi

)
P−Q + ∑

i∈H
ziXi − zQ A

= 0 + V,

so this is exactly the error factor caused by randomness in
the commitments. The issuer attempts to verify πCredShow
using V′. If the proof fails, the presentation is rejected; oth-
erwise, the issuer now has the attributes and commitments
{(i, mi)}i/∈H, {(i, Cmi )}i∈H.

Since the commitments Cmi are now authenticated, in the
sense that the issuer knows they are commitments to the
attributes of a credential it previously issued, they can then
be used for further proof statements.

XXX describe parallel presentation of multiple credentials
with shared attributes, establishing consistency at presenta-
tion instead of later.

4.5 Spend-Once Tokens
The credential scheme of [CMZ14] described in Sections

4.1–4.4 creates credentials which can be shown arbitrarily
many times with absolute unlinkability. For bridge dis-
tribution, and other applications, tokens with spend-once
semantics are required. (Here and throughout the paper, we
use “token” to mean a credential that can only be spent once).
To add spend-once semantics to these credentials, we use a
database of nonces.

When requesting a token, the user selects a random nonce
and requests blinded issuance of a credential containing the
nonce, as well as other attributes. When presenting the token,
the user reveals the nonce to the issuer, who stores it in a
database of spent tokens. With our parameter choices, each
nonce (a random scalar) fits into 32 bytes, so that the database
of spent tokens can be implemented efficiently using, e.g., a
bloom filter in front of a trie, or Redis.

Since the nonce is hidden from the issuer at issuance,
the credential presentation is absolutely unlinkable from the
credential creation; since the issuer is the verifier, a database
of spent token identifiers does not impose additional central-
ization requirements; and since the underlying credentials
are secure against forgery, a misbehaving user cannot alter
the nonce and re-spend the token.

To prevent users from sharing tokens, we can anony-
mously bind a token to a user’s identity as follows. Each
user is given an account credential, with a random userid
assigned by the issuer. The userid is then included as a
hidden attribute on each token; whenever a user requests or
uses a token, they present their account credential, and prove
in zero knowledge that the userid of the account credential
is consistent with the userid of the token.

Finally, we note that our token system bears resemblance
to 1997 proposal by Stubblebin, Syverson, and Goldschlag
called Unlinkable Serial Transactions (UST), wherein a user
would exchange a blinded token while viewing a resource or
receiving some service (a “transaction”) from a provider



7

[SSG97] [SSG99]. When the user is finished with their
transaction, the provider issues a new blinded token for
the user’s next transaction. The UST system also allowed
detection of shared tokens, when multiple users try to use
the same token simultaneously.

5 HYPHAE MICROPAYMENTS

Giving users points for good behaviour which they can
anonymously exchange for services effectively entails an
anonymous micropayment system. Rather than leaving that
system implicit in our protocol, we describe it explicitly and
seperately, in the hope that it is of independent interest.

Our system is highly restricted, allowing only a star
topology for payments. Users may only receive credits
from the server, and may only spend those credits at the
server. However, this model is sufficient to build a privacy-
preserving system where users pay for server resources they
use, as long as the value of those resources is higher than
the cost of payment processing. For instance, a web browser
such as Brave could have users buy credits using money, and
then anonymously spend those credits at a payment server
in proportion to users’ website usage; the payment server
would then pay each website in money proportionate to the
credits received.

Name Description Issuance Presentation
u User ID Revealed Hidden

Credential 1: Account Credential creduser

Name Description Issuance Presentation
u User ID Hidden Hidden
n Wallet Nonce Hidden Revealed
w Wallet Balance Hidden Hidden

Credential 2: Wallet Token tokwallet

Double-spend prevention is achieved by revealing the
nonce n when the user wants to spend the token; the server
stores a database of nonces. Applications expecting a high
transaction frequency could prevent database growth by
using key epochs to expire old tokens.

We assume in the rest of this section that each user
has already been issued a credential creduser which has an
attribute u containing a unique user id, and has already been
issued a token tokwallet with matching u and w = 0, and
hidden nonce n. This can be done when inducting new users
into the system, for example, as in Section 6.1.

The scheme could be simplified slightly in other contexts
by dropping the user credential creduser; we use it to
bind each wallet token to a long-term identity and enforce
consistency among all of a user’s tokens.

The maximum balance Ω is a system parameter with
Ω = 3ω . To ensure that balance amounts are in the range
[0, Ω], we use the Back-Maxwell rangeproof described in
[PBF+

17]. For parameters m, n, orthogonal generators A, B,
and input value v, it produces a Pedersen commitment to v
and a proof that v lies in the interval [0, mn− 1] ⊂ Z/`Z. The
proof has size proportional to 1 + mn, and is most efficient
when m = 3.

5.1 Updating a User’s Wallet

A user with wallet balance w can update their balance to
w′ = w + c using the following protocol. Here, we assume
that the wallet balances w, w′ are hidden from the credential
issuer, but the credit amount c is revealed. We allow c
to be negative, giving one protocol for credit and debit
transactions.

It is also possible to hide the credit amount c, as is done
in Section 6.3, but we do not consider that scenario in this
section because it requires proving that c has some protocol-
specific relation to some other credentials.

To request that the server add c points to a user’s
wallet, the user proceeds as follows. The user re-randomises
the tags on creduser and tokwallet to obtain Pcreduser , Qcreduser
and Ptokwallet

, Qtokwallet
. Next, they prepare presentations of

creduser and tokwallet. Since credential presentation produces
Pedersen commitments to the hidden attributes (cf. Section 4),
the user now has commitments

Cu,creduser = uPcreduser + zu,creduser A
Cu,tokwallet

= uPtokwallet
+ zu,tokwallet

A

to the u values of creduser and tokwallet (which are equal for
honest users), and a commitment

Cw,tokwallet
= wPtokwallet

+ zw A

to the current wallet balance.
The user then prepares an issuance request for a new

wallet token with userid u, balance w′ = w + c, and nonce
n′ $←− Z/`Z, producing an ElGamal keypair (d, D) and
encryptions

EncD(uB)← (euB, uB + euD)

EncD(n′B)← (en′B, n′B + en′D)

EncD(w′B)← (ew′B, w′B + ew′D).

Next, the user constructs a Back-Maxwell range proof that
the new wallet balance w′ ∈ [0, Ω], producing a commitment
Cw′ ,range = w′B + zw′A and a proof πRange that Cw′ ,range
commits to a value in [0, Ω].

Finally, the user sets Cw′ ,tokwallet
← Cw + tPw and con-

structs

πUserCredit = NIPK{(u, w, w′, n′, eu, ew′ , en′ , d, zw, zu,1, zu,2) :
EncD(uB) = (euB, uB + euD)

∧ EncD(n′B) = (en′B, n′B + en′D)

∧ EncD(w′B) = (ew′B, w′B + ew′D)

∧ D = dB
∧ Cu,creduser = uPcreduser + zu,creduser A
∧ Cu,tokwallet

= uPtokwallet
+ zu,tokwallet

A
∧ Cw′ ,range = w′B + zw′A

∧ Cw′ ,tokwallet
= w′Ptokwallet

+ zw A},

proving that the encryptions are well-formed, that the user
id is consistent, and that the new balance is w′ = w + c. The
user sends the presentation proofs for creduser and tokwallet,
along with D, EncD(uB), EncD(w′B), EncD(n′B), Cw′ ,range,
πRange, and πUserCredit to the issuer.

The issuer verifies the range proof πRange, verifies the
presentation proofs to obtain authenticated commitments



8

Cu,creduser , Cu,tokwallet
, Cw, recomputes Cw′ ← Cw + cPw, and

uses these to verify πUserCredit.
If the request verifies correctly, the issuer uses EncD(uB),

EncD(n′B), and EncD(w′B) to issue a new wallet token with
attributes (u, n′, w′).

6 THE HYPHAE PROTOCOL

In this section we describe the Hyphae protocol, our
redesign of the rBridge concept for social bridge distribution.
Hyphae retains the overall incentive structure of rBridge, but
replaces the protocol. An overview of the rBridge concept can
be found in Section 3.3, and a comparison between Hyphae
and rBridge can be found in Section 7.

We use the anonymous credential scheme of [CMZ14]
described in Sections 4.1–4.4, and the micropayment scheme
described in Section 5. Each user has a user credential
creduser, as well as a wallet token tokwallet holding their rep-
utation credit. The distributor issues bridge tokens tokbridge,
which represent a user’s knowledge of a given bridge at
some time. Users can later redeem their bridge tokens to
increase their reputation credit. Finally, users can use their
reputation to purchase invite tokens to invite their friends
into the system.

The protocol uses multiple credential types, defined
inline. The distributor generates a secret key and issuer
parameters for each credential type (user credentials, bridge
tokens, wallet tokens, etc.); we assume throughout the proto-
col description that each user has in hand the distributor’s
issuer parameters for each credential type.

6.1 Account Creation

To create an account, a prospective user needs an invite
token. An invite token is a credential with a single attribute,
an invite code. (Creation of invite tokens is discussed in
Section 6.6).

Name Description Issuance Presentation
n Invite token nonce Hidden Revealed

Credential 3: Invite Token

Name Description Issuance Presentation
u User ID Revealed Hidden

Credential 4: Account Credential

To redeem an invite token, a prospective user proceeds
as follows. First, they parse their invite code to the token
(P0, Q0, ninvite), then re-randomises the tag by computing

t $←− Z/`Z (P, Q)← (tP0, tQ0).

They then create an ElGamal keypair (d, D) and choose
nonces n0, n1, . . . , nκ

$←− Z/`Z, where κ is the system param-
eter denoting the number of bridge tokens per user. Next,
they create encryptions

ei
$←− Z/`Z EncD(niB)← (eiB, niB + eiD)

for each i = 0, . . . , κ, and prove these were created correctly:

πUserNonces = NIPK{(d, e0, . . . , eκ , n0, . . . , nκ :
EncD(niB) = (eiB, niB + eiD)∀i ∈ [0, . . . , n]

∧ D = dB}.

The prospective user sends the invite token (P, Q, ninvite),
along with the EncD(niB) and πUserNonces.

The distributor verifies the invite token and marks it as
spent. If successful, the distributor choooses a random userid
u $←− Z/`Z and uses EncD(n0B) to issue an initial wallet
token with userid u, nonce n0, and balance b = βκ + 1. This
is sufficent to purchase κ initial bridges at β credits each.
Since purchasing a bridge requires a previous bridge token,
the distributor uses the EncD(niB), i = 1, . . . , n, to create κ
bridge tokens with bridge id b = 0. The user can present
these while purchasing a new bridge (as the bridge id is
hidden then), but cannot use them to claim credit (as the
bridge id is revealed then, and the distributor rejects the
request).

The distributor sends the user credential, wallet token,
and initial bridge tokens to the new user, who uses the
protocol of Section 6.4 to purchase κ bridges using their initial
bridge tokens. Since these requests are indistinguishable
from any other users’ bridge purchases, the only way for
the distributor to track a user’s initial bridge assignment is
by observing the timing of requests. We therefore propose
that the user’s client buys a single bridge immediately
(and linkably), so they can connect to the network, and
adds random delays to stagger the remaining κ − 1 bridge
purchases over a longer time period.

6.2 Bridge Tokens

Users collect points as long as their bridges remain
unblocked. For the purposes of this section, we assume that
the distributor already maintains a list of blocked bridges.

A bridge token represents a proof that a particular user
was assigned a particular bridge at a particular time. Times
are measured in coarse units since an epoch t0; the time
resolution is a system parameter τ. Bridges are identified by
a Bridge ID, a hash of some canonical representation of the
bridgeline1.

Bridge tokens are used in three ways. First, users present
them to claim reputation credit, as described in Section 6.3.
Second, users present them when buying a new bridge,
ensuring that each user has a fixed number of valid bridge
tokens, as described in Section 6.4. Third, users present them
when reporting that a bridge is blocked, as described in
Section 6.5.

Reporting that a bridge is blocked requires revealing
the bridge b. This should be unlinkable from buying a
new bridge, so that the distributor cannot track bridge
assignments. We therefore use two nonces, to give the
following semantics: a bridge token may either be used to
claim reputation credit, or it may be used to buy a new bridge
and to report that a bridge is blocked. This is summarized
in Credential 5, where H denotes that the attribute is hidden
and R that it is revealed.

1. Simply hashing the bridgeline is not sufficient, as the pluggable
transport arguments are unordered, free-form key-value pairs.



9

Name Description Issue Claim Buy Blocked
n1 Nonce H R R H
n2 Nonce H R H R
u User ID H H H H
t Timestamp R H H H
b Bridge ID R R H R

Credential 5: Bridge Token

6.3 Earning Reputation with Bridge Tokens

A user with a bridge token tokbridge issued at time t can
claim credit at time t′ as follows. At time t′, the user has
earned credit c = ρ(t′ − t), where ρ is a system parameter
representing the rate of reputation credit per bridge per time.
The user presents their bridge token and wallet token to the
distributor. If the bridge remains unblocked, the distributor
issues a new bridge token with updated timestamp t′, and
a new wallet token with updated balance w′ = w + c. If the
bridge has been blocked, the distributor issues only a new
wallet token, with the original balance w.

The user must reveal the bridge ID, so that the distributor
can verify the bridge remains unblocked. Revealing the
original timestamp t would make requests highly linkable;
to hide it, we amend the protocol of Section 5.1. Instead
of revealing the credit amount c, the user commits to it
and to the original timestamp t; the distributor uses these
commitments to verify that the claimed credit amount is
correct.

As in Section 5.1, the user user re-randomises the tags on
creduser, tokbridge, and tokwallet to obtain

Pcreduser , Qcreduser

Ptokbridge
, Qtokbridge

Ptokwallet
, Qtokwallet

.

Next, they prepare presentations of creduser, tokbridge, and
tokwallet. This produces commitments

Cu,creduser = uPcreduser + zu,creduser A
Cu,tokbridge

= uPtokbridge
+ zu,tokbridge

A

Cu,tokwallet
= uPtokwallet

+ zu,tokwallet
A

to the u values of the user’s credentials (which are equal for
honest users), a commitment

Cw = wPtokwallet
+ zw A

to the current wallet balance w, and a commitment

Ct = tPtokbridge
+ zt A

to the bridge token timestamp t. The user then chooses
randomness zw′

$←− Z/`Z and computes commitments

Cc,tokbridge
← cPtokbridge

− zt A

Cc,tokwallet
← cPtokwallet

+ (zw′ − zb)A

to the credit amount c, and uses Cc,tokwallet
to compute

Cw′ ← Cw + Cc,tokwallet
= w′Ptokwallet

+ zw′A.

To request issuance of new wallet and bridge tokens,
the user chooses nonces n′1, n′2, n′′ $←− Z/`Z, an ephemeral

ElGamal keypair (d, D), and creates encryptions EncD(uB),
EncD(n′1B), EncD(n′2B), EncD(n′′B), EncD(w′B).

Finally, the user computes the proof

πBridgeCredit = NIPK{(u, w, w′, n′1, n′2, n′′, eu, ew, ew′ , en′ , en′′ , d,

zt, zw, zw′ , zu,creduser , zu,tokbridge
, zu,tokwallet

) :

EncD(uB) = (euB, uB + euD)

∧ EncD(wB) = (ewW, w′W + ew′D)

∧ EncD(w′B) = (ew′W, w′W + ew′D)

∧ EncD(n′1B) = (en′1
B, n′1B + en′1

D)

∧ EncD(n′2B) = (en′2
B, n′2B + en′2

D)

∧ EncD(n′′B) = (en′′B, n′′B + en′′D)

∧ D = dB
∧ Cu,creduser = uPcreduser + zu,creduser A
∧ Cu,tokbridge

= uPtokbridge
+ zu,tokbridge

A

∧ Cu,tokwallet
= uPtokwallet

+ zu,tokwallet
A

∧ Cc,tokbridge
= cPtokbridge

− zt A

∧ Cw = wPtokwallet
+ zw A

∧ Cw′ = w′Ptokwallet
+ zw′A},

and sends to the distributor the presentation proofs for
creduser, tokwallet, and tokbridge along with Cc,tokwallet

, D,
EncD(uB), EncD(n′1B), EncD(n′2B), EncD(n′′B), EncD(w′B),
and πBridgeCredit.

The distributor verifies the presentation proofs, producing
authenticated commitments Cu,creduser , Cu,tokbridge

, Cu,tokwallet
,

and Ct. The distributor then recomputes Cc,tokbridge
as

Cc,tokbridge
← ρ(t′Ptokbridge

− Ct);

if the user is honest this is

Cc,tokbridge
= ρ(t′ − t)Ptokbridge

− zt A = cPtokbridge
− zt A.

Next, the distributor recomputes Cw′ as

Cw′ ← Cw + Cc,tokwallet
;

if the user is honest this is

Cw′ = (w + c)Ptokwallet
+ (zw + zw′ − zw)A

= w′Ptokwallet
+ zw′A.

The distributor uses these commitments to verify
πBridgeCredit. If the proof fails, the distributor aborts. Oth-
erwise, the distributor checks whether the user’s bridge has
been blocked, and marks the bridge and wallet tokens as
spent. If the bridge remains unblocked, the distributor issues
a new wallet token using EncD(uB), EncD(w′B), EncD(n′′B),
and a new bridge token using EncD(uB), EncD(n′1B),
EncD(n′2B), t′, and b. If the bridge was blocked, the dis-
tributor issues only a new wallet token using EncD(uB),
EncD(wB), and EncD(n′′B).

This protocol requires that the user and the distributor
both agree on the current timestamp t′. While agreement
on time is a hard problem in general, in this setting exact
consistency is not required. First, if the time resolution is
sufficiently coarse-grained (e.g., on the scale of hours), the
server can add a grace period for requests near a timestamp
boundary. Second, since the distributor does not mark the



10

tokens as spent if the proof fails to verify, the user can retry
their request later with the same tokens.

6.4 Buying New Bridges

Users with sufficient reputation can use their credits
to buy new bridges. To cap the number of bridges a user
may use to collect points, purchasing a new bridge requires
invalidating a previous bridge token.

To purchase a new bridge, a user proceeds as follows.
First, the user prepares presentations of their user credential
creduser and current bridge token tokbridge. Here, the user
hides all attributes of tokbridge except the nonce n1. This
prevents the distributor from partitioning users based on
their bridge assignments. These presentations produce com-
mitments

Cu,creduser = uPcreduser + zu,creduser A
Cu,tokbridge

= uPtokbridge
+ zu,tokbridge

A.

The cost of a new bridge is a system parameter β. The
user prepares a wallet transaction as in Section 5.1, debiting
their wallet by β. The user then prepares a request for a
new bridge token, choosing nonces n′1, n′2

$←− Z/`Z, an
ElGamal keypair (d, D), and creating encryptions EncD(n′1B),
EncD(n′2B), EncD(uB). The user then creates a proof

πBuyBridge = NIPK{(u, n′1, n′2, eu, en′1
, en′2

, d, zu,creduser , zu,tokbridge
) :

EncD(uB) = (euB, uB + euD)

∧ EncD(n′1B) = (en′1
B, n′1B + en′1

D)

∧ EncD(n′2B) = (en′2
B, n′2B + en′2

D)

∧ Cu,creduser = uPcreduser + zu,creduser A
∧ Cu,tokbridge

= uPtokbridge
+ zu,tokbridge

A},

and sends to the distributor the presentations of creduser and
tokbridge, the wallet transaction, D, EncD(uB), EncD(n′1B),
EncD(n′2B), and πBridgeCredit.

The distributor verifies the presentation proofs to ob-
tain Cu,creduser and Cu,tokbridge

, verifies πBuyBridge to ensure
EncD(n′1B), EncD(n′2B), and EncD(uB) are well-formed, and
verifies the wallet transaction. The distributor then issues a
new wallet token (as described in Section 5.1), and chooses a
new bridge, using EncD(n′1B), EncD(n′2B), and EncD(uB) to
issue a new bridge token with the current timestamp t, and
returns the new wallet and bridge tokens to the user.

6.5 Reporting Blocked Bridges

Users who can no longer access a bridge can use their
bridge token to report that a bridge is blocked. To do this, a
user presents their bridge token tokbridge, revealing the nonce
n2 and the bridge b, and hiding all other attributes. The user
can then later present the same token to buy a replacement
bridge unlinkably.

Because users reveal n2 when claiming reputation (as
described in Section 6.3), they cannot claim reputation on a
bridge they have reported as blocked. Similarly, they cannot
re-use an old bridge token to repeatedly report the same
bridge as blocked. This means that a user can only report a
blocked bridge if they were issued that bridge, and they may

only do so once. It is therefore difficult for a malicious actor
to falsify blocking reports at scale.

In Section 6.2, we assume that the distributor maintains
a list of blocked bridges. Instead of relying on a seperate
measurement infrastructure, the distributor can use the
authenticated reports of blocked bridges it receives to decide
when a bridge has been blocked.

6.6 Inviting New Users
Users with sufficient reputation can also use their credits

to buy invite tokens to give to their friends. An invite
token is a credential containing a single nonce and no other
information. With our parameter choices, the entire token
(P, Q, n) is only 96 bytes, so it is easy to share.

The cost of a new account is α, a system parameter. To
purchase an invite token, an existing user with wallet balance
w prepares a transaction as in Section 5.1, requesting a new
wallet with balance w′ = w− α, and chooses a random nonce
n $←− Z/`Z and prepares a blind issuance request for an
invite token.

The user sends these requests to the distributor, who
verifies them and issues a new wallet token with an updated
balance and an invite token. The existing user can then send
the invite token to a friend using another channel, such as a
QR code, base64-encoded string, etc.

6.7 Parameter Choices
The system parameters for Hyphae are α, the cost of a

new account; β, the cost of a new bridge; τ, the timestamp
resolution; ρ, the credit rate; κ, the number of bridge tokens;
and Ω = 3ω , the maximum wallet balance.

The parameter choices in the original rBridge design
are not directly comparable, for two reasons. First, they
are derived from estimates of the number of Tor bridges
and bridge users circa 2011–2012, which are no longer
current. Second, our scheme has slightly different invitation
behaviour than rBridge: in rBridge, users are assigned invite
tokens, while in Hyphae they purchase them. This change is
discussed in Section 7.

XXX Choose updated parameter choices based on simu-
lator, rescale credit units so that the maximum balance is a
power of 3.

7 ANALYSIS AND COMPARISON TO RBRIDGE

Hyphae retains the rBridge concept and leaves the incen-
tive structure relatively unchanged, but entirely replaces the
suggested privacy-preserving protocol. In this section, we
describe differences between Hyphae and rBridge.

7.1 Differences between Hyphae and the rBridge proto-
col

In the rBridge protocol, users use oblivious transfer (OT)
[NP01] to prevent the distributor from learning their initial
bridge assignments. We avoid OT entirely by allowing users
to purchase their initial bridges unlinkably from their account
creation. The rBridge protocol also allows a user to request
additional bridges in the event they recieve a duplicate bridge
during OT. We do not handle this case explicitly; in the



11

unlikely event that a user gets assigned duplicate bridges,
the protocol is unaffected – they simply have two tokens for
the same bridge – and they will continue to earn reputation
at the same rate as any other user.

The rBridge protocol uses k-times anonymous authen-
tication (k-TAA) signatures [ASM06], a modification of the
BBS+ signature scheme [CL04], which require pairings. These
credentials may be shown k times unlinkably, but the value
of k chosen for rBridge is unspecified. Instead, we use the
anonymous credentials of [CMZ14], as described in Section 4,
which may be shown arbitrarily many times unlinkably.
They are also much smaller, faster, simpler, and easier to
implement.

7.2 Differences between Hyphae and the rBridge con-
cept

In addition to the cryptographic redesign, Hyphae also
makes a few comparatively minor changes to the incentive
structures of rBridge.

In rBridge, the total amount of reputation a user can earn
from a single bridge is capped at 300 credits. The stated
rationale is to prevent a malicious user from holding one
bridge open to gain reputation, and using it to buy and
report other bridges to a censor. However, the cost of a new
bridge is only 45 credits, meaning that a malicious user just
needs to hold one in six bridges open and can still carry out
the attack. We could amend Hyphae to cap the reputation
earned per bridge, by adding a “credit earned” attribute
to a bridge token, incrementing it in zero-knowledge, and
proving that the earned reputation was below some bound
using a rangeproof. But this seems like a significant increase
in complexity for relatively small decrease in the censor’s
capability.

rBridge also requires a user’s bridge to stay online for a
certain time period (75 days) before a user is able to earn any
credit from it. The stated rationale is to provide incentive
for a censor not to block bridges immediately. However,
this requirement affects both censors and legitimate users
equally; legitimate users seeking to invite their friends must
wait an additional two months before they can start earning
reputation. Because this requirement does not differentially
affect censors, we drop it.

Finally, in rBridge, users with sufficient credit are eligible
to request an invite token. The distributor randomly decides,
according to a probability based on the available bridge re-
sources, to grant or deny the request. In order for the request
to be granted, the user must additionally supply proof that
sufficient time has passed since their last request, in order to
prevent a malicious user from repeatedly requesting invite
tokens to increase the odds of receiving one.

However, this design also fails to differentially affect
censors versus legitimate users. Instead, we allow Hyphae
users to purchase their invite tokens in the same manner
as they would purchase a bridge. This change simplifies
the protocol, and allows implementers to re-use the same
procedures for purchasing bridges and purchasing invite
tokens.

8 IMPLEMENTATION

This document is currently in draft state, and the follow-
ing section is to be completed as Hyphae is implemented.

Currently, this section provides merely notes on the imple-
mentation progress and ideas. Minor changes may be made
to the protocol in the process of implementation.

We plan to implement Hyphae in Rust using Decaf for
Curve25519 [Ham15] to provide a model for a prime-order
group.

9 ACKNOWLEDGEMENTS

The authors are very grateful to Open Technology Fund
for both their financial support of this work and the commu-
nity of excellent people and projects they have assembled. We
also thank Ian Goldberg for his insights, valuable discussions,
and shared ideas; George Danezis for originally suggesting
we look at [CMZ14]; and Tony Arcieri, Oleg Andreev, and
George Tankersley for helpful discussions.

REFERENCES

[Ang14] Yawning Angel. obfs4: the obfourscator, May 2014. (Specifi-
cation).

[APKD10] Anonymous, Mike Perry, George Kadianakis, and Roger
Dingledine. Tor trac ticket #4185: Bridge easily detected
by gfw. October 2010. (Ticket #4185).

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size
dynamic k-taa. In International Conference on Security
and Cryptography for Networks, pages 111–125, Berlin
Heidelberg, 2006. Springer. (PDF).

[BHKL13] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and
Tanja Lange. Elligator: Elliptic-curve points indistinguish-
able from uniform random strings. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 967–980. ACM, 2013. (PDF).

[BK16] Alex Biryukov and Dmitry Khovratovich. Equihash:
Asymmetric proof-of-work based on the generalized
birthday problem. Proceedings of NDSS’16, 21–24 February
2016, San Diego, CA, USA. ISBN 1-891562-41-X, 2016.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes
and anonymous credentials from bilinear maps. In Annual
International Cryptology Conference, pages 56–72, Berlin
Heidelberg, 2004. Springer. (PDF).

[CMZ14] Melissa Chase, Sarah Meiklejon, and Greg Zavuchera.
Algebraic macs and keyed-verification anonymous creden-
tials. ACM CCS, 2014. (PDF).

[CS97] Jan Camenisch and Markus Stadler. Efficient group
signature schemes for large groups. In Advances in Cryp-
tologyCRYPTO’97, pages 410–424. Springer, 1997. (PDF).

[Din08] Roger Dingledine. Tor changelog: Changes in version
0.2.1.1-alpha - 2008-06-13. Technical report, The Tor Project,
June 2008. (Changelog Entry).

[Din11a] Roger Dingledine. Tor changelog: Changes in version
0.2.2.22-alpha - 2011-01-25. Technical report, The Tor
Project, February 2011. (Changelog Entry).

[Din11b] Roger Dingledine. Tor changelog: Changes in version
0.2.3.4-alpha - 2011-09-13. Technical report, The Tor Project,
September 2011. (Changelog Entry).

[Din11c] Roger Dingledine. Tor trac ticket #4014: Iran filters tor by
ssl handshake, sept 2011, September 2011. (Ticket #4014).

[Din12] Roger Dingledine. Tor changelog: Changes in version
0.2.3.17-beta - 2012-06-15. Technical report, The Tor Project,
June 2012. (Changelog Entry).

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel
Wichs. Message authentication, revisited. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 355–374. Springer, 2012.
(PDF).

[DM06] Roger Dingledine and Nick Mathewson. Design of a
blocking-resistant anonymity system. Technical Report
2006-1, The Tor Project, November 2006. (PDF).

https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt?id=97a875ec
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt?id=97a875ec
https://bugs.torproject.org/4185
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=10257&context=infopapers
http://dl.acm.org/ft_gateway.cfm?id=2516734&type=pdf
http://static.cs.brown.edu/people/anna/papers/cl04.pdf
http://eprint.iacr.org/2013/516.pdf
https://pdfs.semanticscholar.org/beee/cc5cda7ef949e5bf00a6b4404bc58853c484.pdf
https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/CensorshipByCountry/Ethiopia
https://gitweb.torproject.org/tor.git/tree/ChangeLog?id=05ef3b959d#n13146
https://gitweb.torproject.org/tor.git/tree/ChangeLog?id=05ef3b959d#n11713
https://bugs.torproject.org/4014
https://gitweb.torproject.org/tor.git/tree/ChangeLog?id=05ef3b959d#n9744
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.3917&rep=rep1&type=pdf
https://svn.torproject.org/svn/projects/design-paper/blocking.pdf


12

[FHE+
12] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily

Stark, Roger Dingledine, Phil Porras, and Dan Boneh.
Evading censorship with browser-based proxies. In
Proceedings of the 12th Privacy Enhancing Technologies Sym-
posium (PETS 2012), pages 239–258. Springer, July 2012.
(PDF).

[Fif17a] David Fifield. Flash Proxies, 2013–2017. (Webpage).
[Fif17b] David Fifield. Meek documentation. 2014–2017. (Web-

page).
[FLH+

15] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Proceedings on Privacy Enhancing
Technologies, 2015(2):46–64, 2015. (PDF).

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many
proofs: Or how to leak a secret and spend a coin. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 253–280. Springer, 2015.

[GSU12] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu.
Anonymity and one-way authentication in key exchange
protocols. Designs, Codes and Cryptography, pages 1–25,
2012. (PDF).

[Ham15] Mike Hamburg. Decaf: Eliminating cofactors through
point compression. In Annual Cryptology Conference, pages
705–723. Springer, 2015. (PDF).

[Han16] Serene Han. Introducing Snowflake (webrtc pt). The Tor
Project, January 2016. (Archived Email).

[Han17] Serene Han. Snowflake. The Tor Project, April 2017.
(Webpage).

[HG11] Ryan Henry and Ian Goldberg. Formalizing anonymous
blacklisting systems. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, May 2011. (PDF).

[KM11a] George Kadianakis and Nick Mathewson. obfs2.c. Techni-
cal report, The Tor Project, 2011. (Sourcecode).

[KM11b] George Kadianakis and Nick Mathewson. Obfsproxy
architecture. Technical report, The Tor Project, December
2011. (Specification).

[KMD+
11] George Kadianakis, Nick Mathewson, Roger Dingledine,

Philipp Winter, Arturo Filastó, Tom Ritter, and Runa
Sandvik. Tor trac ticket #4744: Gfw probes based on
tor’s ssl cipher list, December 2011. (Ticket #4744).

[KMDA16] George Kadianakis, Nick Mathewson, Roger Dingledine,
and Yawning Angel. Pluggable transport specification,
version 1. Technical report, The Tor Project, 2010-2016.
(Specification).

[KSWF12] George Kadianakis, Runa Sandvik, Philipp Winter, and
David Fifield. Tor Trac Ticket #6045: Ethiopia blocks Tor
based on ServerHello. June 2012. (Ticket #6045).

[LLKW12] Isis Lovecruft, Karsten Loesing, George Kadianakis, and
Philipp Winter. Tor Trac Ticket #6414: Automating Bridge
Reachability Testing. June 2012. (Ticket #6414).

[LLY+
12] Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen

Fu. Extensive analysis and large-scale empirical evaluation
of tor bridge discovery. In INFOCOM, 2012 Proceedings
IEEE, pages 2381–2389. IEEE, 2012. (PDF).

[LMFL13] Karsten Loesing, Nick Mathewson, Matthew Finkel, and
Isis Lovecruft. BridgeDB Specification. The Tor Project, 2013.
(Specification).

[Loe11] Karsten Loesing. Case study: Learning whether a Tor
bridge is blocked by looking at its aggregate usage
statistics. Technical report, The Tor Project, 2011. (PDF).

[Mat12] Nick Mathewson. Tor tls history. 2012. (Archived Wiki
Page).

[MF17] Nick Mathewson and Arturo Filastò.
get mozilla ciphers.py. Tor Project Gitweb, 2011-
2017. (Sourcecode).

[ML15] Nick Mathewson and Isis Lovecruft. Bridge Guards and
other anti-enumeration defenses. The Tor Project, 2011-2015.
(Specification).

[MML11] Damon McCoy, Jose Andre Morales, and Kirill Levchenko.
Proximax: A measurement based system for proxies
dissemination. Financial Cryptography and Data Security,
5(9):10, 2011. (PDF).

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 448–457. Society
for Industrial and Applied Mathematics, 2001. (PDF).

[PBF+
17] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory

Maxwell, and Pieter Wuille. Confidential assets. In 4th
Workshop on Bitcoin and Blockchain Research. Blockstream,
2017. (PDF).

[Ped01] T. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Lecture Notes in
Computer Science, volume 576, pages 129 – 140, 2001.

[Pri16] Matthew Prince. The Trouble with Tor. Cloudflare Blog,
2016. (Blogpost).

[SKWF12] Runa Sandvik, George Kadianakis, Philipp Winter, and
David Fifield. Tor Trac Ticket #6140: Kazakhstan uses DPI
to block Tor. June 2012. (Ticket #6140).

[SSG97] Paul Syverson, Stuart Stubblebine, and David Goldschlag.
Unlinkable serial transactions. In Financial Cryptography,
pages 39–55. Springer, 1997. (PDF).

[SSG99] Stuart G Stubblebine, Paul F Syverson, and David M
Goldschlag. Unlinkable serial transactions: protocols and
applications. ACM Transactions on Information and System
Security (TISSEC), 2(4):354–389, 1999. (PDF).

[VAMM+
08] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David

Abraham, and Manuel Blum. recaptcha: Human-based
character recognition via web security measures. Science,
321(5895):1465–1468, 2008. (PDF).

[WC12] Philipp Winter and Jedidiah R . Crandall. The Great
Firewall of China: How it blocks Tor and why it is hard to
pinpoint. USENIX ;login:, 37(6), 2012. (PDF).

[Wil11] Tim Wilde. Tor Bug 4185 Testing and Report. Technical
report, Team Cymru, December 2011. (Webpage).

[Win12a] Philipp Winter. brdgrd (Bridge Guard). Github, 2012.
(Sourcecode).

[Win12b] Philipp Winter. How the Great Firewall of China is
Blocking Tor. 2012. (Webpage).

[WL12] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is blocking Tor. In Proceedings of the
USENIX Workshop on Free and Open Communications on the
Internet (FOCI 2012), August 2012. (PDF).

[WLBH13] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J.
Hopper. rBridge: User Reputation based Tor Bridge
Distribution with Privacy Preservation. In Proceedings
of the Network and Distributed System Security Symposium -
NDSS’13. Internet Society, February 2013. (PDF).

APPENDIX A
EXPLICIT DESCRIPTION OF HYPHAE

This section will contain explicit pseudocode for the
Hyphae protocol.

A.1 Account Creation

A.2 Earning Reputation with Bridge Tokens

A.3 Buying New Bridges

A.4 Reporting Blocked Bridges

A.5 Inviting New Users

APPENDIX B
INTERFACING WITH HYPHAE

Here we sketch a high-level outline of a Tor Browser user
flow and present a compatible RESTful API design.

For the following, we assume that the distribu-
tor’s domain is bridges.torproject.organd that
the distributor is also running a meek reflector on
some popular CDN services, which we will say is at
bridgedistributor.majorcloudprovider.com. We
assume, for all communications with the distributor, that
the user is building a new Tor circuit for each API request,

https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://crypto.stanford.edu/flashproxy/
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://www.degruyter.com/downloadpdf/j/popets.2015.2015.issue-2/popets-2015-0009/popets-2015-0009.pdf
http://eprints.qut.edu.au/48245/1/main_full_version.pdf
https://mikehamburg.com/papers/decaf/decaf.pdf
https://lists.torproject.org/pipermail/tor-dev/2016-January/010310.html
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
http://www.cypherpunks.ca/~iang/pubs/fabs-oakland.pdf
https://gitweb.torproject.org/pluggable-transports/obfsproxy-legacy.git/tree/src/protocols/obfs2.c
https://gitweb.torproject.org/pluggable-transports/obfsproxy-legacy.git/tree/doc/obfsproxy_architecture.txt
https://bugs.torproject.org/4744
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://bugs.torproject.org/6045
https://bugs.torproject.org/6414
http://www.cs.uml.edu/~xinwenfu/paper/Bridge.pdf
https://gitweb.torproject.org/torspec.git/tree/bridgedb-spec.txt
https://metrics.torproject.org/papers/blocking-2011-09-15.pdf
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory?version=3
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory?version=3
https://gitweb.torproject.org/tor.git/tree/scripts/codegen/get_mozilla_ciphers.py?id=05ef3b959d
https://gitweb.torproject.org/torspec.git/tree/proposals/188-bridge-guards.txt
http://cseweb.ucsd.edu/~klevchen/mml-fc11.pdf
https://github.com/isislovecruft/library--/blob/master/cryptography%20%26%20mathematics/oblivious%20transfer/Efficient%20Oblivious%20Transfer%20Protocols%20%282001%29%20-%20Naor%2C%20Pinkas.pdf
https://blockstream.com/bitcoin17-final41.pdf
https://blog.cloudflare.com/the-trouble-with-tor/
https://bugs.torproject.org/6140
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA465531
http://www.dtic.mil/dtic/tr/fulltext/u2/a465280.pdf
http://www.df.uba.ar/~marcos/reCAPTCHA.pdf
http://www.cs.kau.se/philwint/static/gfc/usenix-login-2012.pdf
https://gist.github.com/isislovecruft/163dc41a97f34503c4170e5bdad7d361
https://github.com/NullHypothesis/brdgrd
https://www.cs.kau.se/philwint/static/gfc/
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
http://www.cs.umn.edu/~hopper/rbridge_ndss13.pdf


13

and speaking over this Tor circuit to the distributor’s meek
reflector. 2

B.1 Account Creation

Provided a user has an invite token, which is 96 bytes
in length (or 128 bytes, if base64-encoded), they build a
Tor circuit to the bridge distributor’s meek reflector (at
bridgedistributor.majorcloudprovider.com), and
construct an account creation request, as specified in Section
6.6, and send a JSON-RPC request to /account/create. If
the invite token is valid and previously unspent, the distrib-
utor responds with HTTP status code 201 CREATED and a
body which contains the newly-created account credential, a
wallet token containing sufficient initial balance for k bridges,
and k (blank) bridge tokens, as in Section 6.1. Otherwise, if
there is some error, the bridge distributor responds with 403
FORBIDDEN, which optionally may contain some explanation
of the error.

B.2 Buying New Bridges

Afterwards, the user may purchase their first bridge. To
do so, the user constructs the proofs and other supplementary
data described in Section 6.4, and send it to /wallet/debit.
If the proofs are valid, the distributor responds with 200
OK and a response body containing the new bridge token
and the user’s updated wallet. Otherwise, if the proofs
regarding correct payment and wallet formation do not
verify, the server responds with 402 PAYMENT REQUIRED.
3 For other errors, the bridge distributor responds with 403
FORBIDDEN, which optionally may contain some explanation
of the error.

As described in Section 6.6, the user can then stagger their
other bridge purchases to acchieve absolute unlinkability.

B.3 Earning Reputation with Bridge Tokens

When requesting that their wallet be credited for some
bridge token, the user constructs proofs as outlined in Section
6.2 and sends these to /wallet/credit. If the distributor
agrees to credit the wallet, it responds 200 OK with a
body containing the new wallet. Otherwise, it responds 403
FORBIDDEN with no new wallet, and the user is expected to
simply use the old one again later.

B.4 Reporting Blocked Bridges

When a user wishes to report a bridge is blocked,
it prepares the request according to Section 6.5, and
sends it to /token/blocked. The distributor always re-
sponds to any blocking report—valid, invalid, duplicate,
or otherwise—with status code 451 UNAVAILABLE FOR

2. If the user’s Tor is not working, for example, for users in censored
regions, we assume that the user falls back to using only meek, and we
further assume that the meek reflector is honest, and does not forward
or log the user’s IP address or other identifying information. However,
if the meek reflector does do so, the only information learned is “a user
at this IP address requested a new account and their first bridge at this
time” but that information is still absolutely unlinkable to all future
transactions, including ones regarding the first bridge.

3. This is, as far as we know, the first use of the HTTP 402 status code
for a micropayments scheme, as was originally intended.

LEGAL REASONS, regardless of what it thinks or had previ-
ously thought about the bridge being blocked. That is, the
451 code is essentially just an acknowledgement of receipt.
The distributor may then optionally evaluate the likelihood
of the bridge being blocked according to some heuristics and,
optionally, add it to the database of blocked bridges.

B.5 Inviting New Users
Finally, to invite a friend to the system, the user prepares

proofs and an invite request, as in Section 6.6, and sends
this to /account/invite. If the proofs and the request
are valid, the distributor responds with 201 CREATED and
the invite token, which the user can then give to their
friend. If the proofs regarding correct payment and wallet
formation do not verify, the server responds with 402
PAYMENT REQUIRED. Otherwise, if some other problem
occurs, the distributor responds with 403 FORBIDDEN and
no new wallet (as above, for buying a new bridge).


	Introduction
	Organization
	Notation

	Censorship of the Tor Network
	IP- and DNS-based blocking
	TLS Fingerprinting and Active Probing
	Pluggable Transports
	The Bridge Distribution Problem

	Previous Bridge Distribution Schemes
	Orthogonal problems and solutions
	Proximax
	rBridge

	Keyed-Verification Anonymous Credentials from Algebraic MACs
	The Algebraic MAC
	Credential Issuance
	Blinded Issuance
	Credential Presentation
	Spend-Once Tokens

	Hyphae Micropayments
	Updating a User's Wallet

	The Hyphae Protocol
	Account Creation
	Bridge Tokens
	Earning Reputation with Bridge Tokens
	Buying New Bridges
	Reporting Blocked Bridges
	Inviting New Users
	Parameter Choices

	Analysis and Comparison to rBridge
	Differences between Hyphae and the rBridge protocol
	Differences between Hyphae and the rBridge concept

	Implementation
	Acknowledgements
	References
	Appendix A: Explicit description of Hyphae
	Account Creation
	Earning Reputation with Bridge Tokens
	Buying New Bridges
	Reporting Blocked Bridges
	Inviting New Users

	Appendix B: Interfacing with Hyphae
	Account Creation
	Buying New Bridges
	Earning Reputation with Bridge Tokens
	Reporting Blocked Bridges
	Inviting New Users


