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ABSTRACT

Tor exit blocking, in which websites disallow clients arriving from
Tor, is a growing and potentially existential threat to the anonymity
network. This paper introduces HebTor, a new and robust architec-
ture for exit bridges—short-lived proxies that serve as alternative
egress points for Tor. A key insight of HebTor is that exit bridges
can operate as Tor onion services, allowing any device that can cre-
ate outbound TCP connections to serve as an exit bridge, regardless
of the presence of NATs and/or firewalls. HebTor employs a micro-
payment system that compensates exit bridge operators for their
services, and a privacy-preserving reputation scheme that prevents
freeloading. We show that HebTor effectively thwarts server-side
blocking of Tor, and we describe the security, privacy, and legal
implications of our design.
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1 INTRODUCTION

Researchers have long focused on understanding how censors block
access to anonymity networks [5, 18, 45, 52, 57] and how to best
thwart such efforts [6, 12, 16, 17, 26, 27]. Generally, the focus has
been on nation-state censors [2, 8] and the techniques they employ
to enumerate anonymous relays, distinguish routes that traverse
decoy routers, and more generally, curtail unfettered access to the
Internet.

Separate from the arms-race that is occurring on the ingress
side of anonymity networks—that is, efforts to prevent users from
accessing the uncensored Internet—there is the symmetrical case of
blocking access from anonymity networks. For anonymity networks
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that use proxies (i.e., relays) to forward their users’ traffic, such
blocking is trivially achieved by enumerating and preventing access
from the anonymity network’s egress points (e.g., Tor exit relays). In
particular, in the case of Tor, its exit points are publicly advertised.

Tor exit blocking is becoming increasingly common [28, 37, 60],
with as many as 20% of popular websites discriminating against
users arriving from the Tor network [47]. Although there is anec-
dotal evidence that Tor transports a disproportionate share of ma-
licious and otherwise unwanted traffic [32], perhaps surprisingly,
there is also significant circumstantial evidence that Tor is often
not specifically targeted by sites and is unwittingly blocked. In
particular, a number of DNS and IP blacklists indiscriminately list
(nearly) all Tor relays, including non-exits [28, 37, 47]. Sites that
use such blacklists to filter out requests (or equivalently use hosting
providers that subscribe to such blacklists) will thus block Tor by
default.

The appearance of Tor relays on blacklists presents a potentially
existential threat to the network. As more sites and (worse) web
hosting providers prevent access from Tor, less of the Internet
becomes accessible to Tor’s users, making the network increasingly
ineffective at providing anonymous browsing and/or censorship
circumvention. The consequences of this threat are not entirely
hypothetical: to the great annoyance of the maintainers of the Tor
Project [33], Cloudflare inserted CAPTCHASs on their hosted sites
to users who arrived via the Tor network. (Through some clever
engineering [10, 44], Tor users no longer have to solve multiple
CAPTCHAs for Cloudflare-hosted websites.) This is indicative of a
critical threat to Tor: a wide-scale and unmitigated adoption of a
blacklist that contains Tor relays could effectively cripple the utility
of the anonymity network.

We recently proposed the notion of ephemeral exit bridges for
Tor [60] and envisioned short-lived proxies hosted by popular cloud
providers such as Amazon or Google. These proxies serve as addi-
tional hops in Tor circuits: traffic would exit Tor through existing
exit relays, and be further tunneled through these cloud-hosted
proxies towards their intended destinations. However, this approach
has several practical limitations as it relies on centralized cloud-based
exit bridges. In short, the service can be easily taken down by the
cloud provider.

This paper presents a new, practical, and more distributed archi-
tecture for Tor exit bridges to better mitigate the threat of server-
side blocking. Rather than rely on centralized cloud-based exit
bridges, our architecture uses a network of volunteer-run ephemeral
exit bridges that operate for short periods and can be hosted on
any network. An important advantage of our architecture is that it
makes distinguishing non-anonymous users from exit bridge users
far more difficult, since both sets of users can arrive from residential
networks, for example.

There are a number of challenges in constructing exit bridges
for Tor: (1) ordinary Internet users should have realistically strong
incentives to run exit bridges on their computers so that such a
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scheme might be practically and widely deployed; (2) the exit bridge
architecture should not make it easier for an adversary to attract
a disproportionate share of Tor egress traffic than operating its
own exit relay; and (3) more generally, the exit bridge architecture
should not inflict additional risks to its users’ anonymity over those
that are already imposed by Tor.

Our approach towards meeting these challenges is to operate
exit bridges as Tor onion services.! We call our onion-based exit
bridge solutions HebTor (for hidden exit bridges). The volunteer-
operated HebTor exit bridges accept connections from end-users
via Tor’s existing onion services protocol, and then forward the
traffic to/from the users’ requested destination. In brief, exit bridges
are SOCKS proxies, operating as Tor onion services. Because Tor’s
onion service uses its own rendezvous protocol, exit bridges need
not be publicly accessible and can exist behind NATs or firewalls.
So long as a device is able to create outbound TCP connections, it
can serve as an exit bridge.

We emphasize that HebTor is not intended to conceal the network
addresses of the exit bridges. Exit bridges reveal their IP addresses
whenever they establish TCP connections to the requested destina-
tions. We use Tor’s onion services primarily to (1) take advantage
of their NAT-piercing properties and (2) avoid making changes to
Tor’s core protocols.

As a strong incentive to operate an exit bridge, HebTor allows
exit bridge operators to earn money. We borrow from our previous
design [60] and present simple tasks (e.g., short image labeling
problems) that must first be solved in order for a Tor user to use
an exit bridge. In short, we trade off a halfdozen seconds of work
in favor of access (since the requested site would otherwise be
inaccessible). Completing these tasks earns micropayments which
are transferred to the exit bridge operator.

Unsurprisingly, our design presents a number of interesting
technical challenges, including (but not limited to) pairing Tor users
with bridge operators, ensuring proper payment and verification,
and preventing cheating either by the exit bridge or by the client,
all while not endangering the anonymity of the Tor user or the
unlinkability of her actions.

2 BACKGROUND

Tor is a network of approximately 6700 volunteer-operated relays
(i.e., servers) that provides anonymous TCP connections [12, 50] to
an estimated eight million daily users [30]. Most commonly, users
access Tor through the Tor Browser, which bundles the Tor client
software with a modified version of Firefox. Relays also run Tor to
manage connection state and handle packet forwarding.

To provide sender anonymity, Tor constructs source-routed paths
of (usually) three relays called circuits. The ingress point of the
anonymity network is typically a Tor guard relay, which a user
randomly selects and uses consistently for a long period [11]. The
second and third hops in a circuit are respectively the middleand exit
relays. Exit relays serve as the egress points of Tor. Relay operators
can (and often do) opt not to serve as exits. (We discuss the potential
legal ramifications of operating an exit relay in Appendix A.)

Tor circuits use layered encryption to hide the endpoints of
anonymous communication. The client’s Tor instance agrees on

1Onion services were previously called hidden services.
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cryptographic keys with each relay, using a telescoping approach to
tunnel client-to-relay communication through already-established
portions of the circuit.

Onion services. Tor also enables receiver anonymity. Here, a
server can receive incoming connections via Tor that are addressed
to its onion address (a .onion URL) without having to expose its
actual network location (i.e., its IP address). To run an onion service,
Tor software running on the server selects a number of relays as
introduction points, and constructs an onion service descriptor that
lists these introduction points as well as the onion service’s public
key. The onion service descriptor is then uploaded to a distributed
hash table (stored amongst the Tor relays), indexed with the server’s
onion address, which is derived from the server’s public key.

A user with knowledge of the service’s .onion address can then
retrieve the onion service descriptor, fetched using the distributed
hash table via an anonymous Tor circuit. The user then selects a
relay of its choosing as a rendezvous point (RP) and transmits a one-
time secret to the RP via an anonymous Tor connection. The user
then sends a message to an introduction point, informing it of the
chosen RP and the one-time secret. The introduction point forwards
this information to the onion service. Finally, the onion service cre-
ates a Tor circuit to the RP along with the one-time secret. Similarly,
the user creates a Tor circuit to this same RP, using the identical one-
time secret. The RP then relays all further communication between
the two communicating parties. Critically, all communication is
carried out over Tor circuits, enabling both the client and the server
to conceal their respective network locations [51].

Blocking Tor traffic.  Tor does not attempt to hide the identities
of its exit relays: their IP addresses are publicly advertised by the
Tor directory servers and the Tor-operated ExoneraTor service [49]
provides a queryable interface of historical records of current and
former exit relays. Identifying and blocking traffic from the Tor
network is thus trivial, since all Tor traffic must traverse through
these egress points.

A growing number of sites either block Tor or discriminate
against traffic originating from Tor (for example, by serving
CAPTCHA:). The Tor Project catalogues server-side attempts to
block Tor—which now number around 300 websites—and identi-
fies several third-party blacklists (e.g., abuseat.org, akismet, and
blocked.com) that include the IP addresses of Tor exit relays [37].
Tor contributors have also found instances in which popular host-
ing providers (namely, Akamai, Bluehost, Incapsula, and Convio)
implement Tor-blocking features for some (importantly, not all) of
the client websites that they host [37]. In their 2016 study, Khattak
et al. confirm that Tor exit blocking is fairly common, with nearly
4% of Alexa top-1000 sites preventing access from Tor [28].In a
follow-up 2017 study [47], Singh et al. find much higher block rates
(approximately 20% of tested websites) and identify more than 80
blacklists that contain Tor exits.

Risks of operating an exit bridge or relay. Traffic exiting an
exit bridge could be misattributed as originating from the bridge’s
operator. We survey the current legal landscape concerning the
risks and liabilities of operating Tor exit relays in Appendix A, with
a bias towards United States and European law. In brief, the current
legal consensus seems to be that “safe harbor” provisions exist in
both American and European legal systems, providing prosecutorial
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and civil immunity for operating services (such as Tor) that merely
forward traffic. A more in-depth discussion of the legal risks is
provided in the Appendix.

3 RELATED WORK

As discussed above, the Tor Project [37], Khattak et al. [28], and
Singh et al. [47] all measure the occurrence of Tor exit blocking,
with the latter study finding that such blocking is rampant [28].

Rather than block Tor access outright, Cloudflare instead chose
to require Tor users to first complete CAPTCHAs, in an attempt
to allow Tor’s human users to access their hosted sites while stem-
ming the use of automated scripts that employ Tor [32]. Because
the Tor Browser does not by default allow third party cookies, a
new CAPTCHA had to be solved for each visited Cloudflare-hosted
site. Privacy Pass [10] removed the annoyance of having to solve
multiple CAPTCHAs by using a 1-RTT cryptographic protocol to
issue a large number of tokens to a Tor user after completing a
CAPTCHA. These tokens could then be used to bypass further
Cloudflare-imposed CAPTCHAS [9]. Privacy Pass requires the co-
operation of the site and/or the site’s hosting provider, and does
not prevent the inclusion of exit relay IPs on blacklists.

Sites and hosting providers are able to block Tor exits since
the anonymity network funnels its egress traffic through a well-
defined and enumerable set of exit relays. Peer-to-peer anonymity
systems [42, 46] inherently offer greater resistance to server-side
blocking since their exit points are distributed across all (or many) of
its users, and thus are more difficult to catalogue. Our focus however
is on Tor, given its enormous user base [30, 50]. We also note that
I2P [58, 62], the only widely deployed peer-to-peer anonymity
system, does not directly transit traffic to non-I2P websites and, like
Tor, it also has to rely on fixed exit points to reach the public Internet.
Conceptually, HebTor can be viewed as a method of providing a
distributed egress architecture for Tor.

A number of incentive schemes have been proposed to increase
the number of relays in the Tor network. PAR rewards relay op-
erators with virtual coins that they can spend to form fast paths
through the Tor network [1]. The “gold star” system similarly re-
wards relay operators with improved quality-of-service guarantees.
BRAIDS [21] uses a partially trusted offline bank to issue tickets to
relay operators, which again can be later used to achieve increased
performance. And Tortoise [36] provides incentives by enforcing
rate limits on Tor to all users except those who run relays. These
approaches all impose serious privacy risks, since they significantly
decrease the size of the anonymity set of potential senders of “fast”
traffic to just those who operate relays. Even if successful at increas-
ing the number of exit relays in the network, Tor includes all relay
information in publicly available consensus documents, allowing
blacklist maintainers and site operators to easily identify them.

We also provide incentives to increase the size of the Tor net-
work. Compensating bridge operators with cryptocurrency or fiat
currency could offset operators’ bandwidth costs and justify the
risk of forwarding anonymous traffic. Existing proposals in which
relay operators can receive proof-of-work (PoW) hashes for cryp-
tocurrency mining from Tor users seem promising. Unfortunately,
given the increasing difficulty of mining cryptocurrency [4], it is un-
clear that such an approach would be profitable for relay operators.
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TorCoins [19] have been proposed as a new, Tor-focused alt-coin
cryptocurrency based on proof-of-bandwidth. Unlike TorCoin, we
do not require changes to the core Tor protocol.

Liu et al. define a system of server-specified access controls
for Tor, called TorPolice [29]. In TorPolice, access authorities issue
anonymous capabilities to users after the users complete some
proof-of-work (e.g., a CAPTCHA). Users then expend these capa-
bilities to obtain better service. However, unlike HebTor, TorPolice
requires the active participation of sites, which we seek to avoid.

We previously proposed an exit bridge architecture for Tor [60]
that relies on bridges that are hosted by popular cloud service
providers. That design argued that blocking resistance is achieved
due to the high collateral-damage of blocking exit bridges: since
exit bridges reside in the same IP address ranges as remote desktop-
as-a-service offerings (e.g., Amazon’s Workspaces), blocking cloud
IP addresses en masse would also result in the blocking of potential
website visitors that used cloud-based remote desktops. However,
that approach is dependent upon the cooperation of the cloud
provider: a disapproving cloud provider could immediately and
entirely disrupt the exit bridge infrastructure by suspending the
accounts that operate the bridges.

This paper presents a very different design for exit bridges that
removes all reliance on cloud providers. We achieve greater blocking
resistance by allowing almost any Internet-connected device to
function as an exit bridge, thus making the bridges more difficult
to enumerate.

We introduce a novel, privacy-preserving reputation system to
enable Tor users to select reputable exit bridges. Anonymous repu-
tation systems have been well studied, with such notable examples
as AnonRep [59] and EigenTrust [25]. Unfortunately, we know of
no existing privacy-preserving reputation system that is compatible
with our requirements, in which a set of anonymous users must
collectively form reputation scores for a separate set of exit bridges.

4 OVERVIEW

We begin our presentation of HebTor by introducing our threat
model and system goals (§4.1) and describing our intuitions (§4.2),
and high level design (§4.3).

4.1 Threat Model and System Goals

We adopt Tor’s threat model [12] and consider a non-global ad-
versary that is able to control some portion of the Internet and
optionally participate in Tor as a malicious insider, but is not able to
observe the entirety of the Tor network. We extend this threat model
to cover the various components of HebTor, which we describe in
subsequent sections.

HebTor is not designed to strengthen Tor’s resiliency to known
attacks such as traffic correlation [38, 40], hidden service
de-anonymization [3], and denial-of-service (DoS) [22, 23]. While
we adopt Tor’s threat model, we also inherit the network’s exist-
ing limitations and vulnerabilities. Put more positively, HebTor
also benefits from improvements to the core Tor network. Unless
exacerbated by HebTor, we view existing attacks against Tor as
orthogonal to HebTor and do not consider them in this paper.
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Unlike Tor, we also consider a secondary adversary that attempts
to prevent Tor users from accessing a website. This blocking adver-
sary could be the website operator, a website’s hosting provider,
or a contracted firewall service or tool that blocks IPs that appear
on a blacklist. Here, the blocking adversary’s goal is not necessar-
ily to de-anonymize the requesting user (although HebTor should
certainly maintain the anonymity offered by Tor), but rather to
discriminate against users arriving from the anonymity network.

Finally, we consider malicious HebTor participants who attempt
to game the system either to (1) attract a disproportionate share
of exit traffic (e.g., to increase its ability to perform traffic corre-
lation attacks) or (2) earn compensation without performing the
requisite traffic forwarding. We note that the former is an attack
on anonymity, while the latter targets HebTor’s incentive system.

We do not consider external attackers who attempt to disrupt
HebTor by conducting DoS against its infrastructure. We note here,
however, that such attacks are likely far more difficult to carry out
against HebTor than most other Internet services, since HebTor’s
infrastructure operates as onion services and thus is accessible
only through the Tor network. In short, HebTor benefits from the
denial-of-service protections provided to Tor onion services.

System goals.
goals:

HebTor should achieve the following high-level

o Usability: Tor users should be able to use HebTor exit bridges
without significantly changing how they currently use Tor.

o Anonymity and unlinkability: HebTor should not degrade
Tor users’ anonymity or unlinkability [41].

o Unblockability: It should be difficult for a blocking adversary
to either enumerate exit bridges or otherwise discriminate
against HebTor users.

o Low overhead: The use of HebTor should not incur significant
performance penalties.

e Openness. The system should impose few requirements to
operate an exit bridge, allowing most Internet-connected
devices to participate as bridges.

4.2 Intuitions

Before presenting the technical aspects of HebTor, we briefly present
some of the main intuitions that motivate the system’s design.

Server-side blocking of Tor depends on exit enumeration.
A primary goal of HebTor is to make it difficult to enumerate its
exit points. Blocking Tor’s exit relays is fairly straightforward since
Tor publishes the network addresses of all of its relays (excluding
traditional Tor bridges that serve as alternative ingress points into
the network). There are many reasons why publishing a list of
relays is desirable (e.g., to enable source routing); however, doing
so also makes it trivial to perform exit blocking. A main intuition
behind HebTor is that it is much more difficult to block exit points
that are (1) ephemeral and (2) resistant to enumeration.

Relatedly, exit points (i.e., exit bridges) that are located in the
same autonomous systems and IP ranges as ordinary Internet users
(e.g., residential networks, corporate networks, college campuses,
etc.) are especially difficult to identify, since these are the same net-
work locations that ordinarily originate web requests. In contrast,
exit relays that are located on cloud-hosted virtual private servers
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Website

Bridge Behind
Onion Service

Figure 1: Two attempts to connect to a website that blocks
Tor exits. Top path: A connection via a traditional Tor circuit,
which is blocked by the website. Bottom path: A connection
via a HebTor exit bridge, which operates both as an onion
service and SOCKS proxy.

are fairly easy for a site to identify, as most (but certainly not all?)
client traffic does not originate from such networks.

Removing barriers will increase exit capacity. Only a small
fraction of Internet-connected devices are qualified to serve as Tor
exit relays. Exit relays must have static IPs and be publicly ac-
cessible; they must be able to accept incoming TCP connections.
HebTor is designed to remove such barriers, and enables nearly
any Internet-connected device to serve as an exit bridge. (More
concisely, the device must be able to create outbound TCP con-
nections and connect—either directly or through a Tor bridge on
the ingress side—to the Tor network.) Here, we make use of Tor’s
onion services, which due to its rendezvous protocol, enables any
computer running the Tor software to function as an onion service.

Relative to traditional Tor exit relays, exit bridges require far
less bandwidth capacity since their use is required only for sites
that block Tor. The Tor Metrics Portal reports that the average Tor
user’s throughput is approximately 0.200 Mbps [50]. A moderately-
provisioned ISP offers 100Mbps/100Mbps, and thus a single exit
bridge hosted on such a network could support 500 simultaneous
clients, which conservatively assumes all such clients are constantly
communicating at their maximum rate. In general, we believe that
exit bridges pose little threat of adding congestion to Tor, since the
Tor network itself is much more likely to impose a performance
bottleneck. Additionally, should a particular exit bridge offer poor
performance, Tor’s native congestion control mechanisms will pre-
vent it from causing congestion in the core Tor network. More
generally, by offloading some egress traffic onto additional infras-
tructure, the introduction of exit bridges increases the overall exit
capacity of the Tor network.

Incentives help. HebTor provides incentives for users to operate
exit bridges. In brief, the more Tor users who use an operator’s exit
bridge, the more money is earned by that bridge operator. Unlike
Tor exit relays, since HebTor supports short-lived ephemeral exit
bridges, users may be willing to operate bridges during off-hours or,
if ample bandwidth exists, throughout the day. By compensating
exit bridge operators with actual fiat currency, our hope is that a
sufficient number of Internet users will contribute their bandwidth
and grow the HebTor network of exit bridges.

2There are important exceptions here, including VPN exit points and, as noted by
Zhang et al. [60], cloud-hosted remote desktops.
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4.3 High Level Design

HebTor consists of four components: (1) a broker that assigns exit
bridges to requesting users; (2) a Human Task Provider which
serves easily solvable tasks (e.g., image labeling tasks) to users and
produces a payment when a task is successfully completed; (3) a
pool of exit bridges that operate as Tor onion services; and (4) a
small Tor Browser extension and accompanying software that is
installed on client machines. We envision that this latter component
can be packaged with Tor.

The broker and Human Task Provider are assumed to be honest-
but-curious. HebTor is robust against malicious exit bridges.

At a high level, HebTor operates as follows: a Tor user who can-
not access a site due to Tor exit blocking is presented with a notice
by the Tor Browser, and is optionally redirected to the HebTor bro-
ker’s onion site. The broker presents the user with a human-solvable
task (e.g., an image labeling task), produced by the Human Task
Provider. Completing this task yields a payment that will ultimately
compensate the exit bridge operator. The user is then provided with
an exit bridge. The user’s Tor Browser extension then automatically
configures the exit bridge, and the user’s request is then routed
through Tor to the exit bridge’s onion service. In more detail, the
exit bridge operates a SOCKS proxy (as an onion service), which
then relays the traffic towards the final destination. An example
HebTor workflow is presented in Figure 1. We emphasize that all
HebTor communication (including with the Human Task Provider)
occurs over anonymous Tor circuits, with the exception of the final
“hop” between the exit bridge and the website. A more thorough
explanation of HebTor is provided in the following section.

5 IMPLEMENTATION

At a high-level, HebTor’s primary aim is to allow Tor users to
reliably route their traffic to a destination website through a set of
voluntarily participating bridges while still preserving Tor users’
anonymity. To achieve this goal, HebTor employs a set of protocols
to (1) curate a pool of bridge operators and their reputation (to
prevent abuse), (2) fairly assign and compensate a bridge operator
to forward users’ traffic (i.e., to provide incentives), and (3) create a
secure channel to tunnel traffic between the Tor user and the bridge
operator (to preserve anonymity and unlinkability).

5.1 Typical Workflow

A typical workflow of HebTor involves three main sets of partici-
pants: a broker hosted as a centralized trusted onion service; Tor
users who want to bypass Tor-exit blocking; and bridge operators
who willingly contribute their bandwidth and CPU resources to
tunnel traffic between Tor users and destination websites.

Register and advertise bridge (§5.2). HebTor employs the broker
to curate all volunteering bridges. As the first step for a new bridge
operator, it needs to register itself with the broker and start the
actual bridge as a hidden onion service. The use of onion services
allows the bridge operator to contribute even when it does not have
a static IP address or is behind a NAT. Once the bridge is online, it
advertises its onion address to the broker. The broker maintains a
pool of the onion addresses of all advertised bridges.
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BO: bridge operator; BR: broker; HTP: human task provider

1: function operator_register([BO, BR, HTP))

2 (BO.ECC*,BO.ECC™) = BO.ecc_key_gen()
3 [BO'ECC-'—]Sig(BO.ECC’) — HTP

4 HTP.init_record([BO.ECC* |iy(B0.ECC-))
5: [BO'Ecc+]Sig(BO.ECC’) — BR

6 if BR.h_verify(h_challenge(BR, BO)) then
7 BR.init_record([BO.ECC™]5;i4(B0.ECC-))
8 BR.success — BO

9

: else
10: BR.reject — BO
11: ABORT

Figure 2: Bridge operator registration

Request bridge (§5.3). HebTor includes a TorBrowser extension
that allows Tor users to use HebTor’s service. The extension prompts
Tor users whether to request a bridge when they encounter a Tor-
exit blocking site.

Assign and compensate bridge (§5.4). Upon receiving a request
from the user, the broker selects a bridge from its advertised bridge
pool and assigns the bridge to the user. The selected bridge oper-
ator is compensated for its contribution to the system. While the
compensation originates from the Tor user, it should avoid jeopar-
dizing the anonymity of the user. In addition, given the monetary
incentive, the broker should assign the bridges according to some
fairness policy. In HebTor, the probability that a bridge operator is
selected is proportional to its reputation.

Create HebTor circuit and forward traffic (§5.5). The Tor user
is notified of the bridge assignment which includes the onion ad-
dress of the bridge and the broker’s signature to prove the authentic-
ity of the assignment. The Tor user contacts the bridge and presents
the signed assignment to initiate a HebTor circuit for tunneling
traffic between the Tor user and the destination site.

Update reputation (§5.6). The reputation of each bridge is up-
dated as the bridge forwards traffic. The reputation should reflect
the quality of service that the Tor user receives during an active
session (e.g., the ratio of successful vs. failed requests). In HebTor,
the browser extension and the local relay collect a QoS metric for
each minute of the service and report it to the broker. The broker
then updates the bridge’s reputation after the session concludes.

5.2 Bridge Registration and Advertisement

Bridge registration. Users who are willing to contribute idle band-
width and CPU resources may register at the broker as a bridge
operator. Figure 2 presents the pseudocode of the registration. A
bridge operator is uniquely identified in HebTor by its public/private
key pair; the public key is submitted to the broker and will be used
as the bridge operator’s permanent identifier (Line 7). To defend
against malicious bridge operators who create multiple identities
(for example, for the purpose of reseting a low reputation), the
bridge operator is required to complete a “human task” before the
registration (Line 6). Human tasks are discussed in more detail in
§5.4. For a successful registration, a clean reputation record will
be generated at the broker and linked with the bridge operator’s
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BO: bridge operator; BR: broker

1: function bridge_advertise([BR, BO])

2 BO.onAddr = BO.gen_onion_address()

3 BO.msg = [BO.ECC*, BO.onAddrl;qBo.ECC-)
4: BO.msg — BR

5: if BR.sig_verify(BO.msg, BO.ECC*) then

6 BR.advertise(BO.ECC™, BO.onAddr)

7 BR.success — BO

8 else

9: BR.reject — BO

10: ABORT

Figure 3: Bridge advertisement

identifier. Finally, the bridge operator registers with the Human
Task Provider in order to receive payment for its contribution as
an exit bridge (Lines 3-4). All communication between the bridge
operator and the broker occurs over anonymous Tor circuits; the
broker is itself a Tor onion service.

Bridge advertisement. After the registration, the bridge operator
further provides the onion address that hosts the actual bridge for
forwarding network traffic between the Tor user and the destina-
tion site. Figure 3 presents the pseudocode of this process. More
concretely, the bridge operator sends a signed message containing
the onion address and its identifier (i.e., its public key) to the broker
through Tor. The broker will then add this onion address to the
advertised bridge pool upon signature verification.

To some extent, the broker operates similarly to Tor’s direc-
tory service except that the broker records bridges’ onion addresses
rather than IP addresses. In addition, unlike Tor relays’ IP addresses
which are publicly accessible, discovering an exit bridge’s onion ad-
dress requires human effort. By only providing onion addresses and
requiring human effort for accessing the addresses, an adversary
cannot easily enumerate all bridges.

5.3 Bridge Request

HebTor provides a TorBrowser extension and a local relay that are
installed on the user’s computer. The extension locally maintains
a user-specified blacklist that includes destination sites that block
traffic from Tor exits. The user may modify the blacklist manually,
e.g., by adding a new entry to the blacklist when she experiences
difficulty accessing a site. (Although not implemented in our initial
release, the blacklist could be managed by a third party monitoring
service, which could operate similarly to distributed techniques to
detect misbehavior at exit relays [56]. We leave such integration to
a future release of HebTor.)

Once a request towards an exit-blocking site has been detected,
the TorBrowser extension first checks if a valid bridge instance
exists. If it does, this request will be encapsulated in a SOCKS5
session and forwarded to the bridge using the local relay (which
itself forwards the SOCKS5 connection over Tor). If no valid bridge
instance exists, the user will be redirected to a local page asking
whether to request a new bridge to visit this site. Should the user
choose to, she will be redirected to the broker’s onion site for a
bridge assignment after completing a “human task”. These human
task challenges prevent an adversary from enumerating all bridges,

BO: bridge operator; BR: broker; HTP: human task provider;
U: user

1: function bridge_assignment([BR, U, HTP])

2 (U.ECCE, U.ECCy) = U.ecc_key_gen() // session key for
accessing a website

3 U.ticketParam = U.get_ticket() // blind ticket to bypass
extra human tasks

4 [U.ECCE, U.ticketParamlsig pccy) — BR

5 if U.ticketParam is not a list of unsigned tickets then

6 // U.ticketParam contains a ticket

7: if !BR.sig_verify(U.ticketParam, BR.ticketKey') then
8 BR.reject - U

9 ABORT

10: else // U.ticketParam contains tickets to sign

11: if ! BR.h_valid(h_challenge(BR, U)) then

12: BR.reject - U

13: ABORT

14: BR.tickets = BR.rsa_sign_tickets(U.ticketParam)

15: BR.tickets —» U

16: // now U either presents a valid ticket in ticketParam or

passes the extra HTP verification
17: BO = BR.random_select_advertised_bridge()
18: PoP = h_challenge(BO.ECC*,U)
19: if ! BR.h_verify(PoP) then
20: BR.reject - U
21: ABORT
22: BR.PoA = [BO.onAddr, POP]sig(BR.ECC‘)
23: BR.log_assign(U.ECC{, BO.ECC*, BO.onAddr)
24: [BR.PoA, BR.success| — U

Figure 4: Bridge request and assignment

at the cost of imposing an extra burden to users. In §5.7, we present
an unlinkable ticket scheme based on RSA blind signature to reduce
such burdens.

5.4 Bridge Assignment and Compensation

Figure 4 presents the pseudocode of the bridge assignment process,
which considers the following three aspects:

Biased bridge assignment. Given the pool of advertised bridges
and their corresponding reputation scores, the broker randomly
selects one at random, biased by the bridges’ reputations (Line 17).
More specifically, the probability of a bridge being selected fits the
following distribution:

Pr[ bridge; is selected] = (scorei)/z;lzl(scorej)

where n is the number of available bridges and score; is bridge;’s
reputation score. We add 1 to each score to normalize the score
range from [—1, 1] to (0, 2] to avoid negative probabilities.

Compensation through hCaptcha. Our current implementation
uses hCaptcha, a publicly available service provided by Intuition
Machines, Inc. [20], as its Human Task Provider. hCaptcha accepts
machine learning related data labeling tasks from third party com-
panies, and encapsulates tasks into CAPTCHA challenges which
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BO: bridge operator; BR: broker; U: user

1: function bridge_usage (|BR, BO,U])

2 U.PoA — BO

3 BO.sig_verify(U.PoA, BR.ECC")

4 if ! BO.h_verify(U.PoA.PoP) then

5: BO.reject » U

6 ABORT

7 BO.credential = BO.gen_socks5_cred()

8 BO.credential —» U

9: while U .session is valid do

10: U < BO // tunnel traffic

1 for every minute do

12: U.tag = U.gen_measurement_tag()
13: [U.ECCE, U.tag]sig(U_Ecc;) — BR

Figure 5: Bridge Usage

can be distributed via websites. A solution of an hCaptcha is triv-
ially translated to a result of the corresponding data labeling task.
hCaptcha gathers these results (e.g., across many successful
CAPTCHAs) and sends them back to the third party companies
for compensation; a small portion of this compensation will be
rewarded back to the website that serves hCaptcha. Effectively,
hCaptcha is similar to Google’s reCAPTCHA, but offers payment
to the hosting website (in our case, the broker or bridge operators)
when the human solvable tasks are successfully completed. In §5.8,
we present a brief financial analysis and show that a bridge operator
who contributes 10Mbps of bandwidth can receive $3.55 per day.
HebTor leverages hCaptcha to allow anonymous payment to the
bridge operators (Lines 18-19). One key strength of hCaptcha is that
no contact or payment information is required, and the identity of
the payer (i.e., the Tor user) is completely oblivious to the payee (i.e.,
the bridge operator). Note that hCaptcha currently does not provide
signatures on Proof of Payment (PoP), which slightly deviates from
the ideal case of our protocol. (That is, we compensate for the lack of
signatures on PoPs by having the verifying party explicitly request
proof-of-payments using hCaptcha’s API over Tor.)

Proof of assignment. The broker receives feedback from Tor users
about the bridges, which in turn affects the bridges’ reputations.
This presents an opportunity for a malicious user to increase or
decrease a bridge’s reputation by providing spurious feedback. To
minimize the impact of malicious feedback, HebTor verifies that
the broker randomly assigns bridges to users; this randomization
prevents a malicious user from targeting a specific bridge. Once the
bridge assignment is decided, the broker generates a signed proof of
assignment (PoA) that contains the selected onion address and PoP,
and sends the PoA back to the Tor user (Lines 22-24). The Tor user
then presents the proof of assignment to the bridge operator such
that the bridge operator can verify that the assignment is indeed
made by the broker.

5.5 HebTor Circuit

Figure 5 presents the pseudocode of HebTor’s circuit creation and
reputation update process. Once a bridge receives the PoA from
the user, it verifies the authenticity of the PoA (Lines 2-3), and then
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spawns a SOCKSS5 server with a newly generated credential and
sends back the credential to the user (Lines 7-8). With this credential,
the user can spawn HebTor circuits towards the exit blocking sites
via the bridge. We call this the HebTor circuit to differentiate it
from traditional Tor circuits. We argue in §6 that the HebTor circuit
provides at least the same user anonymity as a Tor circuit.

An illustration of a regular HebTor circuit is shown in Figure 1.
A SOCKSS5 proxy is hosted and configured on the bridge as an onion
service, the local relay serves as the local end point of a HebTor
circuit and listens on a local port to forward traffic between the Tor
Browser and the bridge. The Tor Browser would consider the local
relay as an ordinary SOCKSS5 server and the bridge would deem
the local relay as the source of SOCKS5 requests.

Compared with a three-hop regular Tor circuit, HebTor circuits
contain 7 hops, which means the network latency is roughly dou-
bled. An optimization can be achieved by using Tor’s newer Single
Onion Service protocol [55] on the bridge side, which removes
hops between the rendezvous point (RP) and the bridge, making
the length of a Single Onion Service HebTor circuit reduced to
just four hops. We expect that this will decrease the latency over-
head, as it resembles the performance penalty caused by using an
ingress bridge. Note that a user’s anonymity is not harmed when
the exit bridge operates as a Single Onion Service since it still uses
a three-hop anonymous Tor circuit.

To achieve unlinkability, different bridges will be used for differ-
ent sites requested by the Tor user. HebTor implements SOCKS5
routing at the local relay. When a SOCKS5 request comes from
the TorBrowser, the local relay recognizes the destination site and
selects the corresponding bridge to build the HebTor circuit.

5.6 Reputation Update

The goal of the reputation system is to allow the broker to favor
reliable bridges when assigning them to handle users’ requests. To
achieve this goal, the broker maintains a reputation score for each
registered bridge. The intuition is to assign a higher reputation score
to an honest bridge with a good service history while penalizing a
freeloading bridge that rarely forwards data.

Feedback tag. Reputation scores are calculated from user feed-
back. Once a request is proxied through bridges, HebTor’s browser
extension will query the local relay to learn whether the request
is successful. The local relay knows the number of successful re-
quests (#success) and the number of failed requests (#g,;) during
each minute. If #gyccess — #£ail = 0, an “up” vote will be generated;
otherwise a “down” vote will be cast. The vote will then be signed
and sent to the broker via Tor.

Reputation scores. The broker maintains, for each bridge and
bridge session, a list of up/down votes. A session score, computed for
each of a bridge’s session, is defined as the average of the session’s
up/down votes, where up votes are counted as +1 and down votes
as —1. Finally, the bridge’s overall reputation is the median of its
associated session scores. In brief, an exit bridge’s reputation is
the median of its users’ average up/down scores. We discuss the
robustness of reputation scores against manipulation in §6.
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5.7 Unlinkable Ticket Scheme based on RSA
Blind Signatures

As currently described, a user needs to pass two rounds of HTP
challenges: one for sending a request to the broker (this is needed
to prevent a malicious user from enumerating all bridges); the
other for compensating the bridge operator for the contributed
bandwidth and CPU resources. Such frequent HTP challenges neg-
atively impacts user experience. As an optimization, HebTor uses
an unlinkable ticket scheme based on RSA blind signatures to allow
users to bypass the HTP challenges required for sending bridge
requests to the broker.

At a high-level, the broker will assign tickets to a user when it
sends a request for the first time (the user still needs to complete the
HTP challenge this time), such that the user can use these verifiable
tickets to bypass HTP challenges in the future.

Blind signature. More concretely, a ticket is a tuple (m, s) where
m is a random number generated by the user and s is the broker’s
signature for m. To maintain unlinkability between a user’s requests
(and tickets), the user generates a blinding factor r, then sends the
blinded message m’ = m % r¢(mod n) to the broker, where n, e are
generated from the broker’s RSA public ticket key. The broker then
signs m’ and returns signature s” back to the user. The user can
easily recover the actual signature s for m from s’ using the inverse
of r. When the user needs to spend the ticket, he presents (m, s),
and the broker can verify that s is its signature for m. Note that the
broker cannot link s with s” since it does not know r.

The blind signature scheme allows a user to have multiple tickets
after completing one round of HTP challenge: the user can simply
generate a list of m” and let the broker sign each m’ in the list at
the same time. In this way, the user can hold multiple valid tickets
for its use in future requests.

Key rotation. To prevent a malicious user from accumulating tick-
ets, the tickets are made to expire after a specific period of time, by
letting the broker rotate its ticket key at a predetermined frequency.
For example, a set of ticket key pairs may only be valid for signature
generation for 1 hour and for signature verification for 2 hours. In
this case, if a user presents an expired ticket, the verification will
fail and the user has to complete the HTP challenge again.

In addition, to prevent double spending of tickets, once a ticket
(m, s) is received by the broker, the broker should put m into a hash
table, indicating that the ticket (identified by m) has been used. If
m appears again, the broker can detect such collision in the hash
table and serve a HTP challenge instead. Since expired tickets will
automatically fail upon ticket key rotation, we can remove entries
from the hash table 2 hours after their insertion.

5.8 Financial Analysis

In this section, we present a brief financial analysis of (1) the size
of the “market", that is, the total potential revenue that could be
earned per day, and (2) the per-person incentive, that is, the total
potential revenue that could be earned by a single bridge operator.

Market cap. Here we assume a 100% penetration rate—users who
cannot access a site that blocks Tor will all choose to use HebTor.
As of January 17, 2020, the aggregated bandwidth observed at Tor’s
exits is 51.64 Gbps [50]. The block rate for Tor’s web traffic is

10

CCS 20, November 9-13, 2020, Virtual Event, USA

4.8% [60]. Assuming a 30MB bandwidth cap for each bridge, the
total bridges needed per day is 456,878, translating to $456.88 (USD)
revenue per day based on hCaptcha’s pay rate of $0.001 per solve.

Per-person incentive. Here we assume that a bridge operator is
willing to contribute 10% of its bandwidth to run the bridges. As-
suming a 100Mbps residential network and a 30MB/15mins bridge
configuration, then the number of bridges that can be concurrently
supported is 37. Therefore, the total bridges that could be supported
per day is 3,552, translating to $3.55 per day per bridge operator.

Given the $456.88 market cap and $3.55 revenue per bridge oper-
ator, the market can support up to 128 bridge operators who operate
at their maximum capacity.

6 SECURITY

In this section we discuss several important security properties of
HebTor, and provide informal sketches of their correctness.

Mandatory task completion. Our incentive design requires
that users perform some task (for example, an image labeling task)
that raises some revenue, which in turn is directed (as payments
for service) to the exit bridge operator. We first argue that:

Claim: A user cannot use an exit bridge without first performing
the human task, so long as the broker is not malicious.

Sketch: End users interface with the exit bridge using the
bridge_usage procedure defined in Figure 5. This is the only mech-
anism by which the user can access the exit bridge. In step two of
bridge_usage, the bridge operator checks the signature of the PoA
signed by the broker; if the signature is not valid, bridge_usage
terminates. In step three of bridge_usage, the bridge operator calls
the h_verify function on the proof of payment (PoP). If h_verify
returns L (i.e., fails to verify), then bridge_usage terminates and
the user cannot use the exit bridge.

A user can use the bridge if and only if (1) the PoA is properly
signed by the broker (see line 22 in bridge_assignment in Figure 4)
and (2) the PoA contains a valid proof of payment (PoP). Note that
the Human Task Provider’s signature over the PoP is verified by
the broker in line 19 of bridge_assignment.

In summary, to use an exit bridge, a user needs to provide a PoA
signed by the broker, which it can only obtain by successfully com-
pleting the bridge_assignment procedure, which in turn depends
on receiving a valid signed PoP from the Human Task Provider. m

Difficulty of enumerating bridges. Although we do not at-
tempt to provide anonymity to exit bridge operators, HebTor is
most effective when it is difficult for any party to easily enumer-
ate the IP addresses of exit bridges. Such enumeration allows exit
bridges to quickly appear on blacklists.

Claim: HebTor reveals the IP address of an exit bridge only to
(1) Tor relays with which that exit bridge directly communicates
and (2) sites accessed by the exit bridge.

Sketch: Communication between the bridge operator, the broker,
the Human Task Provider, and the end user all occur over anony-
mous Tor connections. The bridge operator does not communi-
cate its IP address in either the operator_register, bridge_advertise,
bridge_assignment, or bridge_usage procedures (see Figures 2
through 5). That is, no component of the HebTor infrastructure
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(not including Tor relays) learns or stores the IP address of the exit
bridge, other than the exit bridge itself.

Therefore, the only exposure of the exit bridge’s IP address oc-
curs when it directly communicates over IP. This happens in two
instances: when the exit bridge uses Tor (i.e., in its communica-
tions with a Tor relay) and when it forwards data on behalf of the
end-user to the requested destination (i.e., website). [ ]

Unlinkability across requests.  Unlinkability requires that an
adversary should not be able to distinguish whether two or more
requests are related [41]. Unlinkability is critical to maintaining
anonymity: by way of example, consider a user who uses an anony-
mity service to connect to two websites, and then discloses its
identity (e.g., by posting a message over an unencrypted HTTP
connection) to exactly one of the two sites. An adversary who
observes traffic at the anonymity network’s egress point and can
link the user’s two anonymous connections can then trivially infer
the sender of the otherwise anonymous communication stream.

In the context of HebTor, our goal is to prevent any party (in-
ternal or external to HebTor) from determining whether two sites
accessed via exit bridges originated from the same end-user. We
group all of the web objects associated with a site into our notion
of a single “request”; this corresponds to the behavior of the Tor
Browser, which uses a separate Tor circuit to achieve unlinkability
between different browser tabs and windows. That is, like Tor, we
aim to provide unlinkability between a client’s requests of two or
more websites.

We first argue that the ticket protocol achieves unlinkability.

Claim: A party who has access to two HebTor tickets cannot de-
termine whether those tickets were issued to the same or different
users.

Sketch: A HebTor ticket contains a single randomly chosen number
m selected by the user who initially generates the (unsigned) ticket.
Let m; denote the random number present in ticket #;.

The user sends only blinded tickets to the broker; the RSA blind
signature scheme guarantees that the broker does not learn the
blinded random value m; selected by the user, for any ticket ¢;.
An honest-but-curious (semi-honest) broker who obeys the pro-
tocol will return a blind signature to the user, who then unblinds
the signature to obtain the signed ticket (i.e., m along with its ac-
companying signature). Importantly, the honest-but-curious broker
cannot link two tickets tx and t as originating from the same user,
since (1) it never learns the random numbers m, and my and (2) my
and my are independent and identically distributed random values.
Since the broker periodically rotates signing keys, it can determine
whether t, and t; originated during the same key period.

A malicious broker can attempt to watermark a given requestor’s
tickets by returning invalid signatures (e.g., signatures over values
chosen by the broker). However, a user detects such misbehavior
by verifying that the returned signature, once unblinded, is over
the user-provided (blinded) input m;. [ ]

Claim: HebTor achieves unlinkability between a client’s requests
of two or more websites.

Sketch: For each requested website, the user initiates the
bridge_assignment procedure, obtaining a new proof-of-assignment
(PoA), set of tickets, and (potentially) a new exit bridge (see §5.5).
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It is easy to show that, by construction, two or more PoAs are un-
linkable: they contain the onion address of an exit bridge (chosen
independently, with replacement, for each PoA) and a proof-of-
payment (PoP). The PoP is also unlinkable across sessions, as it
contains only a signed session public key, which is used only for
the given session. Above, we previously argued that two or more
tickets are unlinkable.

Each instantiation of bridge_assignment occurs using a new Tor
circuit between the user and the broker. Additionally, the user does
not use consistent identifiers or credentials when communicating
with the broker, and relies only on ephemeral session keys. Because
the broker cannot identify the party with whom it is communicating
(since communication occurs over a dedicated Tor circuit) and there
is no identifying information about the user in an invocation of
bridge_assignment, for any two invocations of bridge_assignment,
the broker cannot distinguish between two different users calling
bridge_assignment and the same user calling the procedure twice.

We next argue that a bridge operator cannot distinguish between
two connections originating from the same user and two connec-
tions each originating from a different user. Interactions between
the user and the exit bridge are governed by the bridge_usage pro-
cedure. Here, the requesting user provides only a PoA—which we
argued above is unique for every requested site.

In bridge_assignment, the user interacts with a Human Task
Provider via the h_challenge procedure. The challenge is served
to the user via a Tor circuit, and hence the challenge service does
not learn the user’s identity. Additionally, since a new Tor circuit is
used for every invocation of bridge_assignment and Tor provides
unlinkability across circuits, then the challenge service cannot de-
termine whether two challenges are associated with the same or
different users.

Finally, the broker can attempt to link user requests using the rep-
utation tags that are sent to the broker (see line 13 of bridge_usage).
The tags consist of the user’s assessment of the exit bridge (ex-
pressed as +1 or —1), a time index, and the user’s session public key;
the tag is additionally signed using the user’s session private key.
As intended by design, tags can thus be linked across a particular
session (i.e., request for a web site). However, since a new session
key is used for each site request, the broker cannot distinguish
whether two tags from two different sessions are produced by the
same or different users. [ ]

Robustness of reputation scores.  The probability that an exit
bridge is assigned to a user is proportional to that exit bridge’s
reputation score. We next argue that reputation scores are robust
against manipulation.

Claim: If (1) the broker is honest, (2) n honest clients and « colluding
malicious clients are connected to a malicious exit bridge, and (3) the
exit bridge forwards traffic only for m < n/2 honest clients, then «
must be greater than [ £ —m] for the exit bridge to obtain a positive
reputation.

Sketch: As computed by the broker, a bridge’s reputation score is
the median of the average of measurements taken by the bridge’s
users. The users’ measurements are communicated in line 13 of
the bridge_usage procedure. Importantly, note that the broker only
accepts measurements from users who have been assigned to that
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bridge, since the user’s session key ECC;r is recorded by the bro-
ker in line 23 of bridge_assignment and the measurements are
signed by the corresponding session private key ECCg (line 13 of
bridge_usage).

It follows from the statement of the claim that the malicious exit
bridge will not forward traffic for 2 = n — m users. Each of the i
honest users will contribute a score of —1 to the broker.

To obtain an overall positive reputation score, it then follows
that m’f;;l‘fra > 0.5, since the reputation score is the median of the
user-contributed averages. Here, we conservatively assume that all
served honest users and all malicious users assigned to the bridge
will contribute positive rankings of +1 to the broker. Hence, the
fraction of positive scores (m+ a) to total scores (m+ i+ ) must be
greater than 0.5. Substituting in n = m + m to the above inequality,
we obtain @ > [§ — m]. ]

The implications of the above claim is that as more honest users
(n) are assigned to the malicious exit bridge, the adversary must
either serve a large fraction of the honest users (m) to achieve a
positive reputation, or must operate a large number of malicious
HebTor users who then need to be assigned to the malicious bridge
and successfully complete the human task. At the extreme, if the
adversary does not forward traffic for any honest clients, then to
earn a positive reputation, it needs to operate at least half of the
clients that are assigned to its malicious bridge.

Non-degradation of anonymity. Our goal is to enable Tor
users to access sites that they would otherwise be unable, without
degrading their anonymity. We first consider the case in which the
broker is honest-but-curious, and then explore the ramifications of
a malicious broker.

Claim: If the broker is not malicious, HebTor offers similar
anonymity to that of Tor.

Sketch: All communication between the user and the broker, and
between the user and exit bridge, are conducted over Tor. As argued
above, HebTor sessions are unlinkable and the HebTor protocols
do not include identifying information about the user. A curious
broker therefore cannot discern the identity of the user.

The user and the exit bridge communicate via SOCKS5. Since
the exit bridge operates as an onion service, this communication
is both end-to-end encrypted and, in the case of the exit bridge,
self-authenticating [12].

The user may be assigned to an malicious exit bridge. This hap-
pens with a probability that is proportional to the reputation of the
exit bridge. As shown above, the reputation system is difficult to
manipulate: the adversary needs to operate at least half of the total
clients that connect to its malicious bridge if it does not forward
any traffic for honest clients.

Of course, the adversary can operate bridges with high repu-
tations by participating in the HebTor network and forwarding
traffic. The probability of a user selecting a malicious bridge is thus
proportional to that bridge’s contribution towards the network’s
sum of reputation scores. This is not dissimilar from traditional Tor
exit relays, which are selected proportional to relays’ bandwidth
contributions to the network.

If a malicious bridge is chosen, it cannot trivially identify the
client’s network location, since the client communicates with the
bridge via Tor. However, if the traffic between the client and the

12

CCS 20, November 9-13, 2020, Virtual Event, USA

website is not end-to-end encrypted (e.g,. using TLS), then the
bridge can learn the user’s identity if it is revealed in the contents
of the communication. Operating the egress point also significantly
increases the adversary’s ability to de-anonymize users using traffic
correlation attacks [38, 40], which have been shown to be prob-
lematic for Tor [24]. Overall, the risks of selecting a malicious exit
bridge are analogous to those from selecting a malicious exit relay,
when the broker is not malicious. [ ]

A malicious broker cannot directly learn the identities of the re-
questing users, since users communicate only via anonymous Tor
connections. However, a malicious broker can assign only mali-
cious exit bridges to requesting clients. This is roughly equivalent
to having clients always select a malicious exit relay under Tor, and
thus incurs additional susceptibility to eavesdropping and traffic
correlation attacks, as described above.

As potential future work, we could increase HebTor’s resilience
to malicious brokers by using a more distributed model, akin to
Tor’s authoritative directory architecture. Here, the general concept
would be to have exit bridges register with multiple brokers, who
would then vote on a signed consensus document. The information
theoretic private information retrieval technique suggested by Mit-
tal et al. [35] could then be used to allow users to efficiently obtain
an exit bridge from multiple brokers, while protecting against se-
lective corruption attacks in which a malicious broker purposefully
returns malicious bridges. We leave the exploration of improving
HebTor’s protection against a malicious broker as future work.

7 LIMITATIONS

HebTor bypasses server-side blocking of Tor by permitting any
Internet-connected device to operate as an egress point. Our tech-
nique is targeted at IP-based blocking of exit relays.

A limitation of our design is that it does not completely avoid
fate sharing. Just as Tor exit relays can be added to an IP blacklist, so
can the IP addresses of exit bridges. However, unlike exit relays, exit
bridges reside on end-user devices, and thus are more likely to be
on dynamically assigned IP addresses; this increases the potential
collateral damage of blocking such IPs since overblocking prevents
future potential customers from accessing the site. Additionally,
because they are located on potentially residential/broadband net-
works, it is difficult for a website operator to distinguish between
normal client traffic originating from the residential ISP and Tor
traffic that egresses through the residential ISP. Where such distinc-
tion is possible, HebTor does not eliminate the threat of fate sharing,
since the blocking of an exit bridge disrupts the communication of
all connected Tor users.

As with traditional (ingress) bridges, HebTor bridges are also
susceptible to enumeration. Bridge enumeration is an open problem
for Tor, but it is worth emphasizing that enumeration attacks are
usually enabled by an adversary with a large workforce—e.g., a
nation-state’s intelligence service. Such human resources would
unlikely be available to website or blacklist operators. Additionally,
HebTor offers some protection against automated enumeration
since learning an exit bridge requires first solving an hCaptcha.
Finally, we envision that our incentive scheme will (hopefully)
provide a fresh flow of volunteers to make the effectiveness of such
enumeration attacks short-lived.
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Figure 6: Distribution of HTML similarity scores for various
browsing configurations.

We also note that operating a Tor exit bridge poses similar legal
risks to operating a Tor exit relay. We discuss the current legal
landscape of running a Tor egress point in Appendix A.

8 EVALUATION

Our evaluation aims to answer two main questions: (1) whether
HebTor helps Tor users bypass Tor-exit blocking and (2) what are
the performance penalties of using HebTor.

8.1 Experimental Setup

Bridge configuration. The HebTor exit bridge runs on an Ubuntu
18.04 virtual machine, connected to the Internet through a U.S.-
based home broadband network with an advertised bandwidth ca-
pacity of 100 Mbps. We use microsocks [43] as the backend SOCKS5
server on the bridge, which is hosted as a Tor onion service.

We perform experiments using both the classic onion service
scheme and the newer Single Onion Service design [55] that de-
creases latency by removing three hops from the classic onion
scheme, at the cost of sacrificing receiver anonymity.

User configuration. The simulated user also runs on an Ubuntu
18.04 virtual machine, with Firefox and TorBrowser installed. We
use Selenium [48] as a controller to simulate user browsing behavior.
Experiments are conducted over the live Tor network.
Workload. We select the first 1000 websites from the Alexa Top
sites list as the destination websites throughout our evaluation.

8.2 Functionality Evaluation

To evaluate HebTor’s ability to bypass Tor exit blocking, we use
HTML similarity score [31] to measure the similarity between HTML
pages fetched directly (without Tor) versus pages retrieved through
Tor or an exit bridge. The similarity score is between 0 to 1; a higher
score indicates higher similarity between two pages. A similarity
score of 1 indicates two identical pages. If a website blocks traffic
from Tor exits, we should expect a low similarity score between
the directly fetched webpage and the (empty) page retrieved via an
ordinarily Tor circuit.
We consider the following configurations:
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TBB (Locar) uses a modified version of the Tor Browser that
communicates to the website directly without using Tor. We
opt for this modified version of the Tor Browser over Firefox
since the Tor Browser has a number of unique features (e.g., a
restricted Javascript engine) that, if ignored (e.g., in the case
of Firefox) would introduce artificial errors in our similarity
scores, since all other configurations use the Tor Browser.
We perform two TBB (Locat) fetches to minimize the impact
of dynamic content. The comparison result of these two
fetches is used as our baseline HTML similarity score. Note
that for the following configurations, their similarity scores
are also calculated against the first TBB (LocaL) fetch.

e TBB (FIxeD) uses TorBrowser and visits the destination
through the Tor network. To minimize the effects of localized
web content, we fix the exit relay during the entire experi-
ment, and ensure this relay is in the same geographic region
as the exit bridge used in other configurations.

TBB (Ranpom) uses TorBrowser and visits the destination
through Tor. The exit relay is randomly selected. This is the
default Tor configuration used by Tor users.

HeBToR (ALL TRAFFIC) uses TorBrowser and visits the des-
tination through HebTor. All requests, including retrieving
images and other objects, are tunneled through the same
exit bridge.

HeBToR (NON-TARGET @ RaNDOM ExiIT) uses TorBrowser
and visits the destination through HebTor. Requests for non-
target hosts are routed through a random Tor exit relay. This
is HebTor’s default scenario: a bridge is responsible only for
routing a given user’s traffic to a specific host that blocks
Tor, while all other requests are routed via Tor exit relays.
HEeBToOR (NON-TARGET @ FIXED EXIT) uses TorBrowser and
visits the destination through HebTor. Requests for non-
target hosts are routed through same fixed Tor exit relay.

We use the same fixed exit relay in the TBB (F1xep) and HEBTor
(NoN-TARGET @ F1XED EXIT) scenarios.

For each destination website, we first check whether the returned
HTTP status code reported by Selenium is valid, and then check
whether the HTML body is wrapped properly. Invalid status codes
or incomplete HTML bodies will directly lead to a similarity score
of 0. We note that additional objects may still be partially loaded,
since we rely on Selenium’s returned status code corresponding to
the webpage’s main HTML content.

Figure 6 shows the cumulative distribution of similarity scores
for the configurations described above. We observe that the simi-
larity scores of HEBTOR, especially HEBTOR (ALL), closely track the
baseline, and consistently and notably outperform those of TBB.

In addition, we further observe that there is a significant gap
between TBB (Fixep) and TBB (RaANDoM)—the former has a much
higher prevalence of low similarity scores. We attribute this to our
selection of the fixed exit relay, which is a high-performing and
longstanding exit relay that is thus more likely to appear on IP
blacklists than the relays we select randomly. This also applies to
the gap between HEBTOR (NON-TARGET @ F1XeD Ex1T) and HEBTOR
(NoN-TARGET @ RanDOM EXIT).
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Figure 7: Performance overheads.

In summary, we find that HebTor is able to achieve much greater
similarity scores (relative to direct communication) due to its ability
to access sites that would otherwise be inaccessible to Tor users.

8.3 Performance Evaluation

To evaluate the performance overhead, we measure the latency
and loading time when visiting the Alexa Top 1000 websites.

We focus on the performance of the Tor exit bridges rather than
on the cost of contacting the broker. The broker’s responsibility is
to assign bridges and bookkeep the bridges’ reputations; the broker
is not part of the circuit (depicted in Figure 1) and does not impose
any additional delays. We anticipate that the cost in contacting the
broker to be within a few seconds, which is mainly due to solving
an hCaptcha to obtain a proof-of-assignment (PoA). Setting up a
HebTor circuit further takes some time from the arrival of the PoA
to the start of HTTP request, including an onion-service lookup and
one round-trip communication of the PoA submission and SOCKS5
credentials retrieval, followed by a normal SOCKS5 handshake. The
delay caused by the circuit setup is measured to be between 2.5
to 4.0 seconds. However, this startup cost can be eliminated by
having the user construct a pool of ready-to-use HebTor circuits;
this is analogous to Tor’s construction of Tor circuits, which are
established at start time.

We use the PerformanceTiming API [61] available both on Firefox
and TorBrowser. Latency is defined as the return time of the first-
byte of response, which is TRespStart — TRegstart> and loading time is
defined as total time for the data transmission, which is TpespEnd —
TRegstart- We consider the start and end timestamps of the server’s
response regardless of whether the reply indicates a “block” or not.
On the user side, we deactivate the use of guards to eliminate the
bias introduced by using a fixed guard.

We consider the following four configurations:

e FIREFOX uses the Firefox browser to visit the destination
website via direct IP communication;

e TBB uses the Tor Browser to visit the destination website
through a Tor circuit;

e HEBTOR uses the Tor Browser to visit the destination website
through a HebTor circuit; and
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e HeBToR (ONE ONION) uses the Tor Browser to visit the des-
tination website through HebTor using the Single Onion
Service scheme.

For each destination, we collect Tjztency and Tjgading for all four
configurations. Figure 7 shows the cumulative distribution of la-
tency (Tatency) and page loading time (Tjoading). We observe that
the performance of our system with the Single Onion Service is
similar to that of Tor’s, with an increase in median of 0.08s for
Tatency and 0.13s for Tjpading- HebTor with an ordinary three-hop
Hidden Service is slower, as expected—the increases in median
Tatency and Tjoading are respectively 0.25s and 0.40s—showing the
tradeoff between performance and server anonymity.

9 CONCLUSION

HebTor bypasses Tor exit blocking by reassigning the job of ex-
iting the Tor network from a collection of fixed exit relays (as
in Tor) to a network of more ephemeral run-from-anywhere exit
bridges. The key insight to HebTor is that exit bridges can join
the Tor network as onion services, allowing nearly any Internet-
connected device to function as an exit bridge. We provide an incen-
tive structure that compensates Internet users for operating HebTor
bridges, and a reputation system to load balance requests and pre-
vent freeloading exit bridges. Our implementation is available at
https://github.com/GUSecLab/tor-exit-relays.
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A LEGAL RISKS OF OPERATING AN EXIT
BRIDGE (OR EXIT RELAY)

Operating an exit bridge incurs risks that are analogous to those of
running an exit relay. Traffic can be misattributed as originating
from the bridge rather than being relayed through it. We briefly
review the legal risks, according to the most current literature, of
forwarding traffic on behalf of an anonymity network. We empha-
size that we are synthesizing others’ legal opinions in this appendix,
and are not formulating any new legal theories of our own. Our
survey is admittedly biased towards the legal systems in the United
States and in Europe.

Minérik and Osula [34] present the most comprehensive analysis
of the legality of anonymity systems, with a particular focus on Tor.
Their legal analysis is based on European Law, and in particular, on
case law from the European Court of Human Rights and the Court
of Justice of the European Union. In their analysis of the legality
of operating Tor exit relays, they found the most pertinent law is
Article 12 of the E-Commerce Directive [15]. Article 12 gives safe
harbor (i.e., legal immunity) to a “service provider” that “...(a) does
not initiate the transmission; (b) does not select the receiver of the
transmission; and (c) does not select or modify the information
contained in the transmission...” [15]

Minarik and Osula conclude that operators of Tor exit relays—
and we believe, by equivalent arguments, operators of exit bridges—
clearly meet criteria (a)—(c). The question, which was unanswered
at the time of their 2016 legal analysis, was whether exit relay oper-
ators could be considered service providers, which under European
law, must be “normally provided for remuneration” [14]. That is,
the question of whether safe harbor protections applied to exit relay
operators in Europe hinged on whether the fact that Tor exit relay
operators did not charge for their services negated their ability to
be considered service providers. This question was addressed by
the Court of Justice of the European Union later in 2016, which
found that renumeration is not required for the service provider [7].

There is no law in the United States that specifically governs
the use of Tor or other anonymity networks [54]. Exit relay opera-
tors however frequently receive copyright infringement complaints
under the Digital Millennium Copyright Act (DMCA) [53]. The
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Electronic Frontier Foundation (EFF) and others have argued that
Tor operators fall under the DMCA's safe harbor provisions [13, 39],
which provide immunity so long as the communication is not mod-
ified in transit, the communication did not originate from the relay,
and no copy of the communication is stored [53]. While several
relay operators have received DMCA complaints, EFF reports that
no one has been sued or prosecuted solely for running an exit relay
in the United States [13].

B OTHER FUNCTIONS REFERENCED IN THIS
PAPER

We list all other supplemental functions we referenced in this paper
with their brief pruposes here:
General Processes

e ecc_key_gen() generates an ECC public/private key pair.

o sig_verify(msg, sig, pubKey) verifies whether the signa-
ture sig for a message msg is signed by pubKey.

e h_challenge(payee, user) verifies user is indeed a human
using challenges created by HTP. A proof-of-payment (PoP)
signed by HTP will be returned if the user passes the chal-
lenge and a payment will be accounted towards the payee.

e h_verify(PoP) verifies whether a proof-of-payment (PoP)
is valid. A valid PoP indicates a piece of human work has
been confirmed.

Tor User’s Processes

e U.get_ticket() retrieves a valid unblinded ticket. If no ticket
is available, a list of unsigned tickets will be returned (see
Section 5.7).

e U.gen_measurement_tag() generates QoS measurement
tags during an active traffic forwarding session (see Sec-
tion 5.6).

Human Task Provider (HTP)’s Processes

e HTP.init_record(BO.id) registers the bridge operator (BO)

on HTP using the BO’s. identifier (B0.ECC™).
Broker’s Process

¢ BR.init_record(BO.id) initializes a new record for bridge
operator (BO.ECC"), with a default reputation.

e BR.advertise(BO.ECC*, BO.onAddr) adds BO’s onion ad-
dress to the broker’s advertising pool; BO’s reputation will
be referenced.

e BR.log_assign(session, BO.id, BO.onAddr) marks the bridge

with onion address BO.onAddr as assigned, and the user in
session has the right to send QoS measurement tag which
may impact the BO’s reputation.
Bridge Operator’s Process
e BO.gen_socks5_cred() generates a clean SOCKS5 creden-
tial for the Tor user to connect to the bridge.
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