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Abstract

Tor is the most well-known tool for circumventing censorship.
Unfortunately, Tor traffic has been shown to be detectable us-
ing deep-packet inspection. WebRTC is a popular web frame-
work that enables browser-to-browser connections. Snowflake
is a novel pluggable transport that leverages WebRTC to con-
nect Tor clients to the Tor network. In theory, Snowflake was
created to be indistinguishable from other WebRTC services.
In this paper, we evaluate the indistinguishability of
Snowflake. We collect over 6,500 DTLS handshakes from
Snowflake, Facebook Messenger, Google Hangouts, and Dis-
cord WebRTC connections and show that Snowflake is identi-
fiable among these applications with 100% accuracy. We show
that several features, including the extensions offered and the
number of packets in the handshake, distinguish Snowflake
among other WebRTC-based services. Finally, we suggest
recommendations for improving identification resistance in
Snowflake. The dataset used is publicly available.

1 Introduction

Authoritarian governments continue to employ a myriad of
technical mechanisms to detect and suppress internet activ-
ity [1]. Censors can trivially deny access to specific websites
by blocking IP addresses or impeding DNS resolution. These
techniques are only successful when the censor can accurately
detect the activity it wishes to suppress. Pluggable transports
transform Tor traffic into seemingly benign traffic to disguise
user activity [2]. We look to evaluate a new pluggable trans-
port, Snowflake.

Snowflake overview. Snowflake is composed of three core
components: (1) the client, a user in a censored region, (2) the
Snowflake broker, a server that connects clients to Snowflake
proxies, and (3) a Snowflake proxy, a volunteer with an uncen-
sored internet connection [3]. After the broker has paired the
client with an available proxy, the client and proxy establish
a WebRTC connection. The client can then connect to a Tor
relay through the Snowflake proxy.
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Figure 1: Messages exchanged during DTLS handshake

WebRTC connection. WebRTC is a web framework that
supports peer-to-peer communication between browsers. The
WebRTC handshake utilizes either Data Transport Layer Secu-
rity (DTLS) or Stream Control Transmission Protocol (SCTP).
Every application examined in this work employs DTLS. As
illustrated in Figure 1,

Snowflake detection. Snowflake’s success relies on the
ubiquity and indistinguishability of WebRTC [4]. If few appli-
cations use WebRTC, blocking all instances of WebRTC is a
reasonable approach to blocking Snowflake. However, many
web applications, such as Facebook Messenger and Google
Hangouts, use WebRTC to facilitate browser to browser con-
nections. As more services adopt WebRTC, the collateral
consequences of a blanket WebRTC ban would outweigh the
benefits of blocking Snowflake. In this case, one way the cen-
sor can identify Snowflake is by its WebRTC handshake [5].

2 Evaluating Snowflake’s Indistinguishability

Threat model. Any surveillance state can easily observe its
internet access points, with some bandwidth and computa-
tional limitations. We consider an adversary with access to a
client’s WebRTC packets, including headers, protocols, and
payloads. We assume that Snowflake is resistant to detection
by IP address. Given a large volume of temporary proxies



and the use of techniques such as domain fronting, a censor’s
ability to detect Snowflake connections via IP addresses is
limited [6].

Data collection. We collect data by capturing isolated
DTLS handshakes. Table | summarizes the handshakes col-
lected. We have released this dataset so that it is publicly
available. [7]

Snowflake Facebook Google Discord
Firefox 991 796 1000 992
Chrome 0 784 995 997
Total 991 1580 1995 1989

Table 1: Number of handshakes collected for each services
on a given browser.

Average Packets per Handshake. Immediately observ-
able is the difference between the average number of packets
sent per handshake among the services, as shown in Table
2. The Snowflake handshake tends to require several retrans-
missions, resulting in a much longer handshake than other
services, where retransmissions are observed sparingly.

Snowflake Facebook Google Hangouts Discord
13.42 4.4 4.5 5.6

Table 2: Average number of handshakes collected for each
service on a given browser.

3 Classifying Handshakes

Classification Methods Table 3 summarizes the 20 features
extracted. We use one-hot-encoding to transform non-numeric
data into binary features. We choose a random forest classifier
because it allows us to examine which features drive model
performance. We use 5-fold cross validation for all evaluation
metrics. We evaluate our classifier using accuracy and micro-
weighted F1 scores.

Feature Client Hello Server Hello
Length

Message Sequence
Fragment Offset
DTLS Version

SID Length

Cookie Length
Cipher Suite Length
Cipher Suites
Extension Length
Extension

Cipher Chosen

CCOCKK

COCCCCCCLCK

v’
v’
v’

Table 3: Features extracted from WebRTC handshakes.

Classification evaluation. One-hot-encoding the features
in Table 3 produces 61 total features. We train a classifier us-
ing scikit learn’s Random Forest Classifier module [8]. Across
all classes the average accuracy is 99.8% and the classifier
perfectly identifies Snowflake in terms of accuracy and micro-
weighted f1 score. Given these results, we search for identi-
fiers: features whose values are unique to each class.

Analyzing feature importance. We leverage the model’s
feature importances to search for Snowflake identifiers. Table
4 shows features unique to Snowflake. supported_groups and
renegotiation_info are extensions offered in the Server Hello.
Server Message Sequence: "1" indicates that the Snowflake
DTLS protocol includes optional Client Hello and Hello Ver-
ify Request packets that the other services omit.

Application
Feature SF FB G D
Server Message Sequence: 1 100 0 0 0
renegotiation_info 0 100 100 100
supported_groups 100 0 0 0

Table 4: Percentage of handshakes that contained a given fea-
ture for Snowflake (SF), Facebook Messenger (FB), Google
Hangouts (G), and Discord (D).

4 Recommendations

Based on our results, it is necessary to modify the Snowflake
WebRTC implementation to resist detection by content. The
following modifications are short-term fixes that can improve
Snowflake’s indistingiushability:

e Do not send the optional Client Hello and Hello Verify
Request from the DTLS handshake

e Offer ‘renegotiation_info’ as an extension in the server
hello

e Do not offer ‘supported_groups’ as an extension in the
server hello

However, modifying Snowflake’s WebRTC approach to
mimic popular services may be futile [9]. As a long-term
solution, we suggest that Snowflake use an existing WebRTC-
based service’s implementation [10].
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