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ABSTRACT
Many powerful computing technologies rely on implicit and ex-
plicit data contributions from the public. This dependency suggests
a potential source of leverage for the public in its relationship with
technology companies: by reducing, stopping, redirecting, or oth-
erwise manipulating data contributions, the public can reduce the
effectiveness of many lucrative technologies. In this paper, we syn-
thesize emerging research that seeks to better understand and help
people action this data leverage. Drawing on prior work in areas
including machine learning, human-computer interaction, and fair-
ness and accountability in computing, we present a framework for
understanding data leverage that highlights new opportunities to
change technology company behavior related to privacy, economic
inequality, content moderation and other areas of societal concern.
Our framework also points towards ways that policymakers can
bolster data leverage as a means of changing the balance of power
between the public and tech companies.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
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1 INTRODUCTION
In August 2020, the most valuable five technology companies had
a total market cap of US$7 trillion [98]. This valuation is driven
in part by large models that use data generated by the public to
recommend content, rank search results, and provide many other
services [25, 90, 101, 136]. More generally, lucrative technologies
used by many companies rely on data generated by large groups of
people to fulfill critical customer needs [8, 25, 101, 124] and drive
decision-making [26].

The reliance of powerful technologies (and thus powerful com-
panies) on “data labor” [8, 101, 123] by the general public presents
an enormous opportunity for the public to gain more power in its
relationship with tech companies. People perform data labor when
they engage in the multitude of interactions with technology that
generate data for firms (e.g. liking, clicking, rating, posting). By
leveraging tech companies’ reliance on their data labor, the public
could demand changes on pressing issues [60, 73], such as dimin-
ished privacy [24, 40], the reinforcement of problematic societal
biases by AI systems [5, 7, 44, 73, 95], eroded labor rights [59, 97],
environmental harms [108], content moderation challenges [52],
and the current imbalance in how profits from data-driven technolo-
gies are distributed between tech operators and data contributors
[25, 101, 126]. Armed with the knowledge of the importance of data
contributions and the tools to action this knowledge, the public
could potentially interfere with recommender systems, search en-
gines, image classifiers, and other technologies until tech companies
made changes related to these issues.

To capture the power inherent in the public’s data labor, this pa-
per introduces the concept of “data leverage” and discusses how the
concept can be made operational. Simply put, data leverage refers
to influence that members of the public have over tech companies
because important computing technologies rely on the public’s data
contributions. Data leverage catalyzes power achieved by harming
data-dependent technologies as well as power achieved by improv-
ing alternative data-dependent technologies and thereby creating
increased competition [121]. The concept of data leverage high-
lights an emergent theme in the FAccT community and related
areas, including human-computer interaction (HCI), social comput-
ing, society and technology studies (STS), machine learning (ML),
and particularly ML research that seeks to advance fairness, justice,
and a human-centered perspective (e.g. [5, 20, 29, 54]). This paper
shows that this interdisciplinary lens can provide a structure for
understanding and actioning an almost entirely untapped source
of power that can advance a wide variety of pro-social goals. Our
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data leverage framework also highlights opportunities for future
research and policy interventions that empower the public in its
relationship with technology companies.

The contributions of this work are to (1) define data leverage,
(2) provide a framework of potential “data levers”, grounded in
prior work that has advanced our understanding of these levers, (3)
outline an initial assessment of strengths and weaknesses of each
data lever in the public’s “tool belt”, and (4) highlight how data
leverage provides important opportunities for research and new
policy. Critically, research and policy can amplify data leverage and,
conversely, using data leverage as a lens can raise the stakes for
related research areas and policy discussions. We pay particular
attention to factors that might facilitate the use of data leverage
(e.g. policy interventions) or that block groups from exerting data
leverage (drawing on the literature on "non-use" of technology)
[12–15, 77, 105, 133].

1.1 Background and Definitions
Before continuing, we first present formal definitions of data lever-
age and supporting concepts. Note that while aiming to be compre-
hensive, these are working definitions. Data leverage is an emerging
topic in a rapidly moving field, and we aim to advance and open
the discussion around data leverage, not conclude it.

• Data leverage: The power derived from computing technolo-
gies’ dependence on human-generated data. Data leverage is
exerted when a group influences an organization by threaten-
ing to engage in or directly engaging in data-related actions
that harm that organization’s technologies or help its com-
petitors’ technologies.

• Data levers: The specific types of actions that individuals or
groups engage in to exert data leverage. For instance, “data
strikes” [123] are one of the data levers we discuss below and
they operate by cutting off the flow of data to tech companies.

2 RELATEDWORK
In this section, we situate data leverage in relation to the FAccT
domain, and then discuss four additional areas that contribute to
the idea of data leverage.

2.1 Data Leverage and FAccT Research
Data leverage emerges in part from work in the broader FAccT com-
munity that has demonstrated the limitations of purely technical
approaches to advancing fairness and justice in computing systems
[5, 20, 29, 44, 49]. This large literature emphasizes the critical roles
played by the societal context around computing systems, and has
demonstrated that sociotechnical approaches are often much more
powerful than purely technical approaches. Data leverage can in
many ways be understood as a framework that helps us better un-
derstand data-driven technologies through a sociotechnical lens
and use that lens to take action to achieve pro-social outcomes.

Data leverage is more specifically informed by Kulynych et al.’s
work that proposed “Protective Optimization Technologies” (POTs)
as a way to address the negative impacts of algorithmic systems and
give agency to those impacted [73]. POTs allow people to contest
or subvert optimization technologies, perhaps adopting techniques
from data poisoning (which we further address below) [73, 119].

Data leverage and POTs are synergistic concepts, and many POTs
enable people to exert data leverage.

2.2 Data as Labor
Data leverage is heavily informed bywork that views data generated
by people using computing systems as a type of labor. Building
on Posner and Weyl [101], Arrieta Ibarra et al. argue that data
should be considered as labor, not “exhaust” emitted in the process
of using technology, and as such, should be subject to some kind
of remuneration [8]. The relationship between the data-generating
public and the companies that benefit from data is very asymmetric.
Not only do people have very little knowledge of — let alone agency
over — how data they contribute is used, but the economic winnings
from powerful data-dependent technologies are reaped entirely by
tech companies [101]. To mitigate this inequality, Posner and Weyl
called for the formation of “data unions”, which allow data laborers
to collectively negotiate with technology companies [101].

The discussion around data labor has inspired work that aims to
measure the economic value of data [70, 90, 124, 125]. One approach
has been to look at the relationship between Wikipedia — the prod-
uct of data contributions from the public — and real-world economic
outcomes such as tourism and investment [62, 134]. Building on
the data as labor concept, Vincent and colleagues have investigated
how people might withhold or redirect their data labor to force a
data-dependent organization to change its practices [121, 123].

Scholars working on data feminism— an intersectional feminism-
informed lens for data science — have called for more efforts to
make the labor of data science visible, including the labor of data
generation [37]. These scholars argue that the invisible labor of data
science, much like housework, has been hidden from public view
and therefore undervalued [37], and that researchers can begin
to shine a light on this labor by studying and highlighting the
processes of data creation (e.g. [35]). In this way, data feminism is
very aligned with the ideas of data leverage; both aim to measure
and make people aware of the value of previously invisible labor
and ultimately reshape power imbalances.

2.3 Data Leverage and Technology
Use/Non-Use

The data leverage concept is also informed by work from HCI and
STS on technology “use”, “non-use”, and the spectrum of behaviors
in between.

Work from Selwyn and Wyatt called attention to the need to
understand people who do not use new technologies [109, 133].
Most relevant to data leverage, Selwyn documented that people
engage in ideological refusal to use certain technology “despite
being able to do so in practice”. Further calls to study non-use in
HCI and STS have been amplified in the years since [11, 105].

Use and non-use exist on a spectrum [15, 133]. People face many
social and technical decisions in terms of when they will use, and
stop using, a particular technology, and these decisions lead tomany
different forms of use and non-use [13, 23, 107]. Recently, Saxena
et al. reviewed the methods for creating typologies to describe the
many forms of use and non-use [106].

Many factors motivate non-use, such as exclusion [133], social
capital [77], and socioeconomic factors [12, 15]. Anyone seeking to
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use data leverage to empower the public must contend with these
factors. Attempts to support data leverage could exclude or dispro-
portionately benefit certain groups following existing patterns in
how technology excludes and benefits these groups.

One common theme in the non-use literature is that it is not
easy for people to refrain from use when it comes to products
that have some benefit in their life, even if the benefit(s) come
with a host of long-term drawbacks. People often speak of their
technology use as a type of addiction, using terms like ‘relapsing”
and “withdrawing” [13, 14]. Challenges also emerge related to the
public presentation role of social media profiles [76]. Even if people
stop using a technology, they may not necessarily delete their data.
In studying individuals who left Grindr, a dating app, Brubaker et al.
found that “even among those who deleted the app, only a minority
tried to close their accounts or remove personal data...[putting
them] in a paradoxical position of thinking they have left while
their profile — or data — continues on” [23].

The non-use literature also indicates that people engage in protest-
related use and non-use behaviors for reasons relating to privacy,
data practices, perceived addiction, and other issues [13, 14, 84, 116].
Anyone engaging in such behaviors is a potential participant in
data leverage campaigns. Casemajor et al. and Portwood-Stacer
argue separately that non-participation in digital media can be an
explicitly political action[28, 100]. Li et al. conducted a survey to
better understand “protest users”, or people who stop or change
their use of tech to protest tech companies[84]. The results sug-
gested that there is a large number of people interested in protest
use: half of respondents were interested in becoming protest users
of a company, and 30% were already engaged in protest use.

An important related lens is that of “refusal”. Focusing on bioethics,
Benjamin makes the case that broad support of “informed refusal”
provides a means of developing a justice-oriented paradigm of
science and technology [18]. In practice, people who engage in
informed refusal are engaging in a political form of non-use, and
thereby data leverage. Building on Benjamin’s work, Cifor et al. and
Garcia et al. describe how the notion of “critical refusal” informed
by feminist scholars can be used improve practices around data
[33, 48].

2.4 Data Leverage and ML Research
Understanding the full potential of data leverage requires deep
engagement with machine learning literature. Two relevant areas
of ML research are those that answer questions around (1) the
effectiveness of adversarial attacks on data-dependent systems and
(2) the relationship between a system’s performance and changes
to underlying data.

There is a large literature that considers the case of adversaries
attempting to attack ML systems (e.g. [10, 19, 30, 45, 56, 75, 78, 81,
92, 99, 112, 113, 115]). In early work on adversarial ML, Barreno
et al. developed a taxonomy of attacks on ML systems [10]. They
focused in particular on attacks in which an adversary “mis-trains”
a system, which is called data poisoning. Data poisoning attacks
against many types of ML systems have been studied in detail
[10, 19, 99, 112, 113, 115]. A type of data poisoning attack that
is particularly relevant to the work in this paper is the “shilling”
attack, which involves “lying” to a recommender system so that a

system recommends certain products favored by the attacker [75].
Accordingly, much work has been done on counteracting shilling
(e.g. [30, 56, 78, 92]), which may be of concern to groups who want
to use shilling-style data poisoning attacks to exert data leverage as
we describe below. Researchers have also explored advanced “data
poisoning” techniques that use sophisticated methods to optimally
harm ML systems [45, 81], which can be much more effective than
unsophisticated attacks (e.g. providing random or average ratings
to many items [75]).

Data leverage raises the stakes of the already high-stakes adver-
sarial ML domain. This paper highlights how adversarial techniques,
such as data poisoning, are not just relevant to issues of security
and privacy, but also to the power dynamics between users and
tech companies. While some recent work in adversarial ML has
taken a political lens and highlighted real world examples of how
adversarial ML can create socially desirable outcomes [7], most of
the literature takes a strictly security-oriented lens.

The literature on the relationship between the amount of training
data a model has access to and model performance is also highly
relevant to data leverage. Many authors have found diminishing
returns of additional data across many contexts and algorithms
(e.g. [31, 36, 46, 61]), and some have studied techniques to address
diminishing returns [21]. These findings are informative as to how
effective data leverage can be.

2.5 Data Leverage and Data Activism
This paper builds on the literature that explores how the public
can change practices of the technology industry. Data activism
is a relatively new form of civic participation in response to tech
companies’ pervasive role in public life [9].

Currently, data activism encompasses practices that affect tech-
nology design, development, and deployment [91]. Data leverage
can be seen as a subset of data activism with a specific focus on em-
powering the public to influence the performance of data-dependent
technologies. Milan and Van der Velden provided a typology of data
activism that further illustrated the specialized activities in this
space — proactive and reactive data activism [91]. Proactive data
activism refers to activists directly influencing software develop-
ment or databases through open source projects or collaborating
with institutions. A particularly relevant data activism initiative is
the open data movement, which aims to democratize information
that is currently only accessible to the state or businesses [57]. For
example, Baack studied an open data project in Finland and high-
lighted the intermediary role of data activists between the public
and operators of data-dependent technologies [9]. On the other
hand, reactive data activism entails activists acting against data-
collecting entities through adversarial behaviors such as employing
encryption. Data leverage includes both types of data activism.

Equipped with the knowledge and expertise to understand data’s
role in computing, researchers can provide the public with valuable
information to identify and employ effective data leverage practices.
Work on data activism has unveiled a rich space to improve data
practices [34]. In particular, Lehtiniemi and Ruckenstein called for
“linking knowledge production to data activism practice” to gain a
comprehensive understanding of data’s role in the public sphere
[80].
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3 DATA LEVERAGE FRAMEWORK
In this section, we describe our framework for data leverage in
detail . The framework — and this section — is organized around
the three data levers we identified. For each lever, we first define
the lever and any variants, and do so grounded in past work viewed
through our data leverage lens. We then provide practical examples
of each data lever and describe the likely factors that will govern
the effectiveness of the lever. Table 1 lists the data levers, their
definitions, and several examples of each.

3.1 Data Strikes
The first of the data levers we will consider are data strikes. Data
strikes involve a person withholding or deleting data to reduce
the amount of data an organization has available to train and op-
erate data-dependent technologies. Although the term data strike
is relatively new, the concept builds on the well-studied practices
of stopping or changing technology use as a form of protest, as
discussed in Related Work. For instance, groups have participated
in prominent boycotts against companies like Facebook and Uber
[55, 110]. In another example, people use ad blocking software to
deprive companies of data about the success of their ad placements
[27].

3.1.1 Data Strike Variants. The most basic form of a data strike is
a withholding-based data strike. In some cases, users can withhold
data by reducing or stopping their technology use, or by continuing
to use a technology with privacy-protection tools (e.g. tracking
blockers [88]). In jurisdictions that allow people to delete their past
data (using laws like the General Data Protection Regulation (GDPR)
and California Consumer Privacy Act (CCPA) [104, 128]), users can
also engage in deletion-based data strikes. The effectiveness of such
strikes will depend on how well regulations can force companies
to regularly retrain or delete their models (so as to remove weights
learned using now-deleted data). There is some precedent from the
U.S. that model deletion can be enforced: in 2021, the Federal Trade
Commission forced a company to delete both customer photos and
the facial recognition models trained on the photos [86].

Data strikes can be further categorized based on their coordina-
tion requirements. Data strikes (and ther other data levers we will
describe below) are likely possible without serious coordination,
given the success of hashtag activism [65] and other forms of online
collective action that operate without central leadership [87]. For in-
stance, people wanting to start an informally-organized data strike
might simply make a call for others to delete as much data as they
are willing. However, “targeted” [10] data strikes have the potential
for a group of data strikers to achieve disproportionate impact [123].
Following Barreno et al.’s definition of targeted attacks on ML sys-
tems, a targeted data strike might encourage participants to delete
specific data points or recruit particularly valuable participants. For
example, data strikers could try to reduce performance for a specific
genre of movie recommendations, while leaving performance for
other genres untouched [123]. Leaders might also recruit specific
users to join their data strike – power users have disproportionate
influence on systems [41, 131, 132] and withholding or deleting
their data may be more impactful.

3.1.2 What Do Data Strikes Look Like in Practice? To understand
what data strikes will look like, we can gain insight from the non-
use literature described above. An individual that chooses to use a
platform less frequently or avoid a feature of that platform reduces
the amount of data they help to generate. In this way, a person’s
choices about use and non-use affect how much data that person
generates. Research in the use and non-use domain has provided
empirical examples of what could be conceptualized as data strikes
against Facebook and Twitter [12–15, 100, 107].

Privacy and surveillance research also lends itself to uncovering
privacy-focused behaviors that can be seen as data strikes. One
prominent example is that many people use anti-tracking browser
extensions that limit the amount of data online trackers collect
[27, 84, 88]. Studies on algorithm transparency also provide evi-
dence suggesting that people engage with data strike-like behaviors
because of dissatisfaction with algorithmic system opacity, such as
ceasing producing reviews for review platforms [42, 43]. Addition-
ally, research on online communities presented case studies of both
Reddit moderators and community members striking by disabling
and leaving their communities [89, 94].

3.1.3 How Can Data Strikes Be Effective? A data strike can be
evaluated based on the importance of the data that “goes missing” in
terms of how that data affects relevant data-dependent systems. Said
another way, does the missing data noticeably degrade a system’s
performance, move a classifier’s decision boundary (or hyperplane,
etc.) in a meaningful way, or otherwise change outputs?

To understand the effectiveness of data strikes, researchers and
strike leaders might look to research on data scaling and learning
curves, which describes the relationship between ML performance
and the amount of data available for training (e.g. [31, 36, 46, 61]).
Findings from this literature could be used to predict the effective-
ness of a strike, as in prior work which explicitly simulated data
strikes [121, 123]. If researchers have shown amodel needs a certain
number of observations in its training set to be effective (e.g. [31]),
data strike organizers could use that research to guide their strike,
for instance by setting a goal for participant recruitment.

In summary, data strikes are a data lever available to anyone who
can withhold or delete their data. While a new concept, research in
HCI, privacy, machine learning, and related fields can help us to
understand what data strikes will look like and how effective they
might be.

3.2 Data Poisoning
A data poisoning attack is an adversarial attack that inserts inac-
curate or harmful training data into a data-dependent technology,
thereby encouraging the model to perform poorly [10]. While data
strikes harm performance by reducing the amount of available data,
data poisoning harms performance by providing a technology with
data that was created with the intention of thwarting the tech-
nology. A relatively accessible way that users can engage in data
poisoning is simply by leveraging standard technology features in
a deceptive manner. For instance, someone who dislikes pop music
might use an online music platform to play a playlist of pop music
when they step away from their device with the intention of “trick-
ing” a recommender system into using their data to recommend pop
music to similar pop-hating users. Other straightforward examples
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Table 1: The three data levers in our framework, short definitions for each, and several examples of each.

Data Lever Name Short Definition Examples

Data Strike withholding or deleting data leaving a platform, installing privacy tools
Data Poisoning contributing harmful data inputting fake data in user profile, clicking randomly,

manipulating images
Conscious Data Contribution contributing data to a competitor switching to a new search engine, transferring photos

to a new platform

include the coordinated effort to create sexually explicit Google
search results for former U.S. Senator Rick Santorum’s name [51]
and coordinated campaigns to use fake reviews to promote cer-
tain products [75]. As we will describe below, very sophisticated
variants of data poisoning that draw on state-of-the-art machine
learning research are also possible.

3.2.1 Data Poisoning Variants. Data poisoning is familiar to the
ML community through adversarial ML (see e.g [10, 19, 99, 112, 113,
115]) and obfuscation (see e.g. [24, 63]). This means data poisoning
organizers can benefit from the knowledge produced through this
body of research.

There are many ways an individual alone can engage in data poi-
soning. The techniques for obfuscation described by Brunton and
Nissenbaum are accessible means of data poisoning for individuals.
For instance, users might trade accounts (drawing on Brunton and
Nissenbaum) or fill in parts of their profile with fake information
[32]. As another example, past work has studied attacks that involve
following certain Twitter users to throw off Twitter’s profiling [93].
These approaches are generally available to an individual acting
alone.

The distinction between coordinated data poisoning attacks and
uncoordinated attacks is important. Typically, adversarial ML pa-
pers frame data poisoning as a contest between a single attacker
(which could be an organization) and a defender/victim. In a coordi-
nated data poisoning attack, however, the attacker is an organized
collective.

To execute a coordinated data poisoning attack, it will be neces-
sary to find the appropriate technique for a particular technology.
Organizers can look to taxonomies in the adversarial ML litera-
ture to see what knowledge an attacker requires and what specific
systems are vulnerable to attacks [10, 99].

Shilling attacks are a data poisoning variant that focuses on
manipulating specific system outcomes rather than general perfor-
mance degradation [56, 75, 78]. Unlike other poisoning attacks, this
type of data leverage manipulates a system to favorably recommend
a product that may not actually be high in quality or popularity,
i.e. putting “lipstick on a pig”. Shilling can be defended against
with systems that identify and remove fraudulent or false reviews
[85, 96], but these systems themselves may be vulnerable to data
poisoning and data strikes.

As with other forms of data leverage, data poisoning applies
more generally to any data-dependent technology, not just to ML
systems. For instance, Tahmasebian et al. provide a taxonomy of
data poisoning attacks against crowdsourcing-based “truth infer-
ence” systems [117], e.g. a system that aims to use crowdsourced
data to ascertain the true number of cars on a road. Generally, any

system that makes or uses estimates about a population can be
compromised by sampling poisoned data.

3.2.2 What Does Data Poisoning Look Like in Practice? Almost any
data-driven technology is vulnerable to deceptive interactions from
users, and there are numerous ways to engage in data poisoning
in practice. In the wild, there are a wide range of behaviors that
constitute data poisoning attacks. Examples include Uber and Lyft
drivers providing false information about their availability [79] and
internet-browsing user using software to automatically click ads
[63].

The most accessible form of data poisoning involves a person
using technology in a deceptive manner, e.g. by lying about their
personal attributes, watching videos they dislike, or searching for
content they are not interested in. They might even use deception-
support tools like the location-spoofing software conceptualized by
Van Kleek et al. to engage in “computationally-mediated pro-social
deception” [120].

By combining findings and tools from HCI and ML, more com-
plex forms of data poisoning may be possible. Users might employ
tools like browser extensions (following Li et al. [82] and Howe and
Nissenbaum [63]) or web platforms (following Zhang et al. [135])
that help them participate in coordinated data poisoning with so-
phisticated means of producing poisoned data (e.g. [45, 113]). For
instance, one could imagine a data poisoning platform, modeled
on existing social computing platforms [72], that provides users
with bespoke poisoned data that they can contribute to a data
poisoning attack. In such a platform, users could upload images
poisoned with pixel-level manipulation to spoof image recognition
systems, or take suggestions of content to interact with so as to
fool recommender systems.

“Data poisoners” might even take inspiration from recent re-
search on what are known as “adversarial evasion attacks” [113],
attacks that help users protect their own images from facial recog-
nition systems (i.e. “evade” the system [99]). Shan et al. show that
their tool, Fawkes, can imperceptibly alter images so that state-of-
the-art facial recognition cannot recognize the altered images [113].
Such tools might be adapted for data poisoning purposes.

3.2.3 How can Data Poisoning be Effective? There are several rea-
sons to believe data poisoning might be a powerful source of data
leverage. Recent work on sophisticated data poisoning suggests
that very small amounts of poisoned data (e.g. using less than 1%
of a training set in work from Geiping et al. [50], using 3% of a
training set in work from Steinhardt et al. [115]) can meaningfully
change the performance of a classifier. Even unsophisticated data
poisoning (e.g. playing music one does not actually enjoy) by a
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majority of users could so completely poison a dataset as to make
it unusable.

Progress in adversarial ML could actually end up reducing the
public’s poisoning-based data leverage, inwhich case non-poisoning
data levers would become more important. Fundamentally, data
poisoners are engaging in a contest with data scientists. This means
any data poisoning technique runs the risk of becoming outdated —
if a company’s data scientists find or invent a defense, the public
might lose leverage [113, 115].

Another interesting outcome of data poisoning is its potential
conversion to a data strike. In the case where an organization can
detect and delete poisoned data, data poisoning reduces to a data
strike. Detectable data poisoning could even be used to replicate a
deletion-based data strike. For instance, search engine users could
use data poisoning tools such as AdNauseum [63] — which clicks
all ads in a user’s browser — to effectively make their ad click data
useless, forcing the search engine operator to delete it.

In general, to harm a tech company, data poisoning involves
deception and requires affecting the experiences of other users of a
platform. Consider someone who lies on a dating site, a surprisingly
common phenomenon [58, 118]. The user may protect their privacy,
but will also poison their own recommendations (e.g. for romantic
partners) and make others’ dating experiences worse off. The same
logic applies to recommendations for friends, videos, and other
goods.

A critical challenge for data leverage will be navigating ethi-
cal and legal challenges around when data poisoning is accept-
able [24, 50, 113, 120]. Whether a particular instance of poisoning
is interpreted to be political dissidence or sabotage depends on
the society where it is enacted and on case-by-case specifics. For
instance, in some cases existing laws around computer abuse or
fraud may come into play, such as the United States’ Computer
Fraud and Abuse Act (CFAA) [2, 64].

3.3 Conscious Data Contribution
The above tactics operate by harming, or threatening to a harm,
a given data-dependent technology. However, there are cases for
which harmful tactics are not a good fit. For instance, perhaps
users do not have the regulatory support needed to delete past data
[127] or a new technique for detecting poisoned data foils their
poisoning attack. Harmful tactics may also be undesirable because
an organization’s technologies may actively provide benefits to
others (e.g. a ML model that is well known to improve accessibility
outcomes).

“Conscious data contribution” (CDC) [121] is a promising alter-
native to harm-based data leverage. In CDC, instead of deleting,
withholding, or poisoning data, people give their data to an or-
ganization that they support to increase market competition as a
source of leverage. People using CDC for data leverage are similar
to people engaging in “political consumption” [71], but instead of
voting with their wallet, they vote with their data. An exciting
aspect of CDC is that while small data strikes struggle to put a dent
in large-data technologies because of diminishing returns, CDC by
a small group of users takes advantage of diminishing returns and
provide a competitor with a large boost in performance. We return
to this point later in our assessment of data levers.

3.3.1 CDC Variants. Variants of CDC closely mirror variants of
data strikes because CDC in a sense is the inverse of data strikes —
where data strikes take, CDC gives.

The easiest way to engage in CDC is to simply start using another
technology with the intention of producing useful data for the
organization that operates the technology. Sometimes, these CDC
campaigns may also involve a data strike if a user moves from one
platform to another, for example abandoning Google and moving
to DuckDuckGo.

In jurisdictions where data portability laws [1] require that com-
panies allow users to download their data, users can engage in CDC
by downloading data from a target organization and contributing it
to the organization’s competitor. Many services already allow users
to download or otherwise access some of their data contributions,
but the usefulness of currently exportable data to other companies
remains to be seen [66].

Similarly to how coordinated data strikes and data poisoning
might seek to hurt a particular aspect of a technology, coordinated
CDC can enhance specific aspects of a technology’s capabilities.
In a coordinated CDC campaign, organizers might instruct partic-
ipants to donate specific types of data, or organizers might seek
out specific people to join a campaign, in an effort to focus on
contributions towards a specific goal. For instance, in the recom-
mendation context, CDC leaders might seek out comedy movies
fans to contribute data to a comedy movie recommender, instead
of trying to solicit data about every movie genre. Recommender
system researchers have shown that allowing users to filter out
their old data could actually improve recommendations [129], so
CDC participants could even use filtering to further target their
data contributions.

The idea of CDC has complex relationships with various propos-
als for “data markets” [6, 67], which are designed to give people
the ability to sell data that they generate. While data markets al-
low users to participate in a form of CDC by giving them choices
about to whom they will sell data, people may prioritize their per-
sonal economic incentives over attempts to gain leverage. A major
issue with CDC via data markets is the fact that any data with
a social component often has information about more than one
person[6, 17], which could make it legally and ethically tricky to
handle data via markets.

3.3.2 What Does CDC Look Like in Practice? As mentioned above,
providing data to online platforms can be a form of Conscious
Data Contribution if users aim to increase the performance of these
technologies relative to their competitors. As such, there are many
existing examples of what CDC might look like in practice.

Cases in which users switch platforms provide one set of ex-
amples. In 2015, many Reddit users expressed dissatisfaction with
the platform and eventually migrated to alternative platforms such
as Voat and Snapzu [94]. In doing so, these users performed an
act of CDC, explicitly supporting Reddit’s competitors. Past work
suggests that migrations are an especially likely form of CDC, be-
cause an individual user’s choice to move platforms as part of a
CDC campaign may lead to people in the user’s social network also
migrating [47, 74]. Where social networks create friction against
data strikes, they can help to drive CDC.
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Many research initiatives involve collecting volunteered data,
which in certain cases could provide opportunities for CDC. In Silva
et al.’s study, people contributed data about their Facebook politi-
cal ads to researchers for monitoring and auditing purposes [114].
While research studies on their own are not necessarily CDC (though
they could be, if the research helps support competitive data-driven
technologies), they can often provide a good example of how CDC
might be implemented.

Other types of data sharing and generation can also be CDC. For
instance, the “data donation” concept explored in the context of data
ethics [102] could be used for CDC. In some cases participation in
human computation [103], crowdsourcing systems, and other social
computing platforms [72] could qualify as CDC. For example, under
our definition, people who choose to contribute data to protein-
folding games could be engaging in a form of CDC [39], with the
potential to exert leverage against other organizations that benefit
from protein folding models.

3.3.3 How Can CDC Be Most Effective? CDC has a lower barrier
to entry than data strikes and data poisoning because it is possible
to engage in CDC without completely stopping use of an existing
technology. Despite this advantage, a critical question for any CDC
effort will be how much leverage “helping a competitor” exerts on
the target. For instance, a group of CDC users might be able to
successfully improve the ML technologies of a small startup that is
competing with a major platform. However, even with improved
data-driven technologies, other factors like access to capital and
switching costs for users might prevent the startup from competing
effectively with the original target of leverage, thus reducing the
chance that the original target changes their practices. In some
cases, standing up a viable competitor that has better practices
could be the end goal of a CDC campaign, even if does not directly
harm another company. By supporting a new viable contender,
CDC participants can effectively change the overall relationship
between the public and technology companies.

Like data strikes, a key determinant of the effectiveness of CDC
will be the level of participation. The more people that participate
in CDC, the more powerful it will become, and the degree of ef-
fectiveness can be estimated using ML findings and methods as
we discuss below. A critical distinction between data strikes and
CDC is that while small data strikes may struggle to escape the flat
portion of ML learning curves, CDC by a small group can actually
provide a huge boost in ML performance to a small organization.
We expand on this comparison in the following Assessment section.

4 ASSESSING DATA LEVERS
In this section, we use three axes to evaluate strengths and weak-
nesses of each data lever: the barrier-to-entry to use a data lever,
how ethical and legal considerations might complicate the use of a
data lever, and finally the potential impact of each data lever. Table
2 contains a brief summary of our assessments.

4.1 Barriers to Entry
In general, CDC has the lowest barrier to entry of the data levers
we identified. This is because CDC does not require stopping or
changing the use of existing technologies, which prior work dis-
cussed above indicates can be challenging (e.g. [13, 14, 107]). A

person can continue using existing technologies operated by an
organization against which they want to exert leverage while en-
gaging in CDC [69, 121]. The main barriers to transfer-based CDC
are regulatory and technical. Do laws help people transfer their
data [1] and do tools exist to make data transfer realistic?

The barriers to entry for data strikes are more substantial then
those for CDC and less substantial than those for data poisoning.
While participating in a data strike disrupts a user’s access to online
platforms, strikes do not necessarily force a user to stop using a
platform like a traditional boycott would. For instance, a user who
relies on Facebook to communicate with family members could
stop engaging with sponsored content on Facebook but continue
messaging their family members. An Amazon user might continue
buying products but stop leaving ratings and reviews. An important
downside of data strikes is that they hurt the performance of tech-
nologies for participating users. By cutting off data contributions,
an individual often reduces their own ability to benefit from a sys-
tem. As discussed by Vincent et al. [123], the effect of a data strike
will almost always be most pronounced on the strike participants.

The barriers to entry for each data lever are also contingent on
the bandwidth available to potential participants and any potential
data caps or data charges they have. Data strikes are likely the
least limited by bandwidth (although striking against an Internet
provider, e.g. Facebook Free Basics, could be challenging [111]).
In places where the Internet is easy to access and has relatively
high data caps, poisoning data by letting music stream for hours or
actively manipulating multimedia may be accessible. In contrast,
in places where Internet access is limited [38], poisoning data may
be difficult if not impossible. Similar dynamics likely will apply to
CDC: data caps could stifle efforts to engage in CDC.

Many of the barriers to entry discussed above are not equally
distributed across different populations, and this means that differ-
ent populations likely have differing access to data leverage. For
instance, with regards to data poisoning, the time available to ex-
pend the necessary effort and/or the skills necessary to do so will
limit the ability of many populations to engage in data poisoning.
Those most positioned to perform data poisoning attacks are ML
researchers, technologists, and others with strong technical skills,
an already relatively privileged group. Nonetheless, members of
this group could use their powerful position for the benefit of peo-
ple without these advantages (there is precedent of tech worker
organizing along these lines [3]).

Turning to coordination, data leverage campaigns will differ in
their coordination needs, with greater coordination requirements
raising the barrier to entry for all three data levers. Large-scale
data leverage is possible without formal organization: boycotts
using Twitter hashtags provide real-world examples [65]. However,
certain data levers require especially well-coordinated effort to see
impact, e.g. sophisticated data poisoning [45].

4.2 Legal and Ethical Considerations
Data leverage organizers may face legal and ethical challenges.
Withholding-based data strikes face the fewest of these challenges.
These data strikes require almost no regulatory support as users
can simply cease using platforms (keeping in mind the differential
barrier to entry concerns discussed above). Deletion-based data
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Table 2: Summary of key points from our assessment of data levers.

Data Lever Barriers to Entry Legal and Ethical Considerations Potential Impact

Data Strike

moderate:
-non-use is challenging
-hurts participating users
-need for privacy tools

lower :
-need privacy laws to delete data
-harming tech may be undesirable

moderate:
-small group has small effect
-large group can have huge impact

Data Poisoning

higher :
-time/effort/bandwidth costs
-may require ML knowledge
-may require extra coordination

higher :
-potentially illegal
-harming tech may be undesirable
-inherently deceptive

moderate:
-small group can have huge effects
-if caught, "reduces" to a strike
-constant arms race

Conscious Data
Contribution

lower :
-can continue using existing
tech

moderate:
-potential to improve harmful technologies
-privacy concerns of sharing data

moderate:
-small group can have large effects
-large group faces diminishing
returns

strikes require a right to deletion and a guarantee that companies
are not data laundering by retaining model weights trained on old
data [86].

The legality of data poisoning is likely to remain an open ques-
tion, and interdisciplinary work between computer scientists and
legal scholars will be critical to understand the legal viability of
data poisoning as a type of data leverage (and to do so in different
jurisdictions). Arguments about the ethics of obfuscation (which
itself can be a form of data poisoning) raised by Brunton and Nis-
senbaum apply directly to the use of all types of data poisoning [24].
Participants must contend with the potential effects of dishonesty,
wastefulness, and other downstream effects of data poisoning. For
instance, there are many harms that could stem from poisoning
systems that improve accessibility, block hate speech, or support
medical decision-making.

Interesting legal and ethical questions also emerge around CDC.
Notably, if a certain data-driven technology is fundamentally harm-
ful and no version of it can meaningful reduce harms (as can be
argued for e.g. certain uses of facial recognition [5, 49]), CDC will
effectively be neutralized.

Another challenge specific to CDC is that there is the potential
that data contributions by one person might violate the privacy
of others, as data is rarely truly “individual” [6, 17]. For instance,
genetic data about one individual may reveal attributes about their
family, while financial data may reveal attributes about their friends.
On the legal front, CDC often requires either regulatory support in
the form of data portability laws or data export features from tech
companies.

4.3 Potential Impact
Data strikes and data poisoning harm data-dependent technolo-
gies, while CDC improves the performance of a data-dependent
technology that can then compete with the technology that is the
target of data leverage. We can measure potential impact in terms
of performance improvement/degradation, as well as downstream
effects (e.g. performance degradation leads to users leaving a plat-
form). Ultimately, we are interested in how likely a data lever is
to successfully change an organization’s behavior with regards to
the goals of the data leverage effort, e.g. making changes related to

economic inequality, privacy, environmental impact, technologies
that reinforce bias, etc.

A relevant finding from prior work [126] describes how data
strikes interact with diminishing returns of data. ML performance
exhibits diminishing returns; in general, for a particular task, a
system can only get so accurate even with massive increases in
available data. As such, when an organization accumulates a suf-
ficient amount of data and begins to receive diminishing returns
from new data, that organization is not very vulnerable to small
data strikes. Such strikes will — broadly speaking — only unwind
these diminishing marginal returns. To a company with billions of
users, a (relatively) small data strike simply may not matter.

The potential impact of data poisoning is also enormous: a large-
scale data poisoning attack could render a dataset completely unus-
able. This approach is also appealing for bargaining: a group could
poison some data contributions, and make some demand in return
for the “antidote”. However, the enormous corporate interest in
detecting data poisoning means that the would-be poisoners face
a constant arms race with operators of targeted technologies. In
the worst case scenario, they will be caught, their poisoned data
deleted, and the end effect will be equivalent to a data strike.

CDC campaigns, which improve technology performance, oper-
ate in the opposite direction of data strikes. Small-scale CDC could
be high impact: about 20% of the users of a system could help a
competitor get around 80% of the best-case performance [121]. On
the other hand, once returns begin to diminish, the marginal effect
of additional people engaging in CDC begins to fall.

Given the current evidence, we believe that the data levers we
described have a place in the tool belt of those seeking to change
the relationship between tech companies and the public. A criti-
cal challenge for data leverage researchers will be identifying the
correct tool for a specific job. Based on the technologies a target
organization uses, a realistic estimate of how many people might
participate in data leverage, and knowledge about the resources
available to participants, which data lever is most effective?

5 DISCUSSION
In this section, we discuss questions associated with data leverage
that lie beyond the bounds of our current framework. We first dis-
cuss the key question of who might expect to benefit from data
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leverage, and highlight how data leverage might backfire. Next, we
summarize key opportunities for researchers, particularly those
working in or around FAccT topics. Finally, we summarize oppor-
tunities for policy that can amplify and augment data leverage.

5.1 Who Benefits from Data Leverage?
Researchers, practitioners, activists, policymakers and others in-
terested in studying, supporting, or amplifying data leverage to
reduce power imbalances must contend with unequal access to data
leverage. As discussed above, there is strong reason to expect that
inequalities in access to data leverage mirror known patterns in
access to technology and other sources of power more generally [5].
However, our framework suggests that data poisoning and CDC
in particular might allow small groups to have disproportionate
impacts. A group of users with needs not currently met by exist-
ing technologies might engage in CDC to support a competitor
to existing tech companies, or use sophisticated data poisoning
techniques that require coordination and knowledge, but not mass
participation. Researchers can play an active and critical role by
developing tools and promoting policy that widely distributes the
ability to participate in data leverage efforts and receive benefits
from data leverage. Future work may also need to contend with
the possibility of organizations counteracting data leverage, e.g.
removing access to publicly available data to maintain a dominant
market position.

5.2 Data Leverage and Data in the Commons
Many lucrative data-dependent technologies rely on “commons”
data (e.g. Wikipedia and OpenStreetMap) in addition to the largely
proprietary types of data we have discussed so far (e.g. interaction
data, rating data). The same is largely true for a variety of data
sources that are privately-owned but are a sort of de facto com-
mons for many purposes (e.g. Reddit data, public Twitter posts).
Examples of commons-dependent technologies include large lan-
guage models (e.g. [22]), search engines (e.g. [90, 122, 125]), and a
variety of geographic technologies (e.g. [68]). Commons datasets
have also been instrumental to the advancement of ML research
(e.g.[4, 16]).

How can we view the widespread dependence on commons
datasets through the lens of data leverage? Adopting a narrow per-
spective, all three data levers can certainly be employed using data
in the commons. In fact, doing so might be a very effective way of
exerting data leverage against a large number of data-dependent
technologies at once. For instance, through poisoning (i.e. van-
dalizing) Wikipedia, one can negatively affect a wide variety of
Wikipedia-dependent technologies including Google Search, Bing,
and Siri [90, 122, 125]. Indeed, this has already been done with
humorous intent a number of times (e.g. [130]). One could similarly
imagine organizing a “data strike” of sorts in Wikipedia or Open-
StreetMap that sought to ensure that a certain type of information
does not appear in these datasets.

That said, from a broader perspective, it is very likely that data
poisoning and data strikes using commons data will do substan-
tially more harm than good. For instance, a concerted effort to
vandalize (i.e. poison) Wikipedia will cause substantial damage: it
would harm Wikipedia readers across the world and would affect

technologies operated by non-targeted organizations in addition to
those operated by targeted ones. A similar case could be made for
most data strikes.

CDC in the context of commons data presents a more complex
set of considerations. Indeed, contributing to a commons dataset
like Wikipedia can in some ways be understood as a type of CDC
as it helps smaller organizations as well as larger ones. However,
an important consideration here is that the ability to make use of
commons datasets in data-driven technologies is gated by capital.
A salient example is GPT-3, OpenAI’s high-profile language model
that uses training data from sources like Wikipedia and Reddit [22].
The unprecedented computing power needed to train GPT-3 high-
lights how the data labor that improves Wikipedia and Reddit can
disproportionately benefit organizations with enormous resources.
An unfortunate reinforcing dynamic regarding data leverage and
commons data thus emerges: while a huge number of organizations
and individuals stand to be harmed by any sort of poisoning attack
or strike on commons data, large and wealthy firms often stand to
benefit disproportionately from improvements to these data. Future
work that focuses on efficient training, smaller models, and related
goals can help to mitigate this particular concern. Similarly, efforts
to open-source models themselves (e.g. share model weights) could
also help.

5.3 Can Data Leverage Research Backfire?
We have presented data leverage as a means to empower the public
to address concerns around computing systems that exacerbate
power imbalances and create negative societal outcomes. However,
research, tools, and policy intended to help data leverage achieve
these goals could do the opposite by empowering groups to perpet-
uate inequalities and, therefore, achieve socially harmful outcomes.
For instance, hate groups take advantage of “data voids” in search
engines to engage in what can be understood as data poisoning
attacks by inserting hateful content and influencing model develop-
ment [53]. Why wouldn’t these groups also try to use other types
of data leverage for similar ends?

There are no clear-cut ways to eliminate these risks, but there
are steps that data leverage researchers can take to avoid a “backfire”
outcome. When designing tools to support data leverage, designers
might consider heuristic preventative design from Li et al. [82] and
try to make harmful uses of a technology more challenging. For
instance, a data poisoning tool might only help users poison certain
types of images known to be important to a particular company
or technology. Designers should also consider the principles of
data feminism [33, 48], including those that emphasize challenging
existing hierarchies, embracing pluralism and context, and making
labor visible.

5.4 Key Research Opportunities for Data
Leverage

The concept of data leverage presents exciting research opportu-
nities for many fields. Researchers in FAccT, ML, HCI, STS and
related areas in particular have unique opportunities to amplify
data leverage.

Data leverage presents a new way of exerting pressure on cor-
porations to make important changes. Most relevant to the FAccT
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community, this might involve exerting leverage so that a tech com-
pany stops the use of a harmful algorithm [73], or pushing for new
economic relationships between data contributors and AI operators
in which the benefits of AI are shared more broadly [101, 126]. Data
leverage thus presents a novel avenue for researchers to actively
pursue pro-social research roles and goals [5].

There is enormous potential to support data leverage with ML
research methods. Using simulations and small-scale experiments,
future work could build a catalog of results that activists could
draw on to make predictions about the effectiveness of a particular
data lever in a particular context, such as “if we get 𝑥 participants
to engage in a data strike against technology 𝑦, we can expect to
bring down the accuracy of technology by 𝑧%, which will likely
be enough to encourage company 𝑐 to make the changes we are
demanding”. As data leverage becomes more mainstream, there
may also be opportunities to study real-world examples and answer
key questions such as: What are the downstream effects on revenue,
user retention, and actual changes in company behavior?

Future design work could build upon the collective action liter-
ature and develop tools to coordinate efforts to use data leverage.
For example, because collective action’s progress is often opaque to
individual participants and this can negatively impact engagement,
future work may adopt tactics from “boycott-assisting technologies”
[82] and display the impact of the public’s data strike or poison-
ing (e.g. this technology has lost 3% of data). Such tools could also
support automating data strikes or data poisoning, similar to Ad-
Nauseam Howe and Nissenbaum, to lower the barrier to entry for
the public.

In addition to data strikes and poisoning, the computing com-
munity can also support CDC by addressing data compatibility and
portability issues across platforms and technologies. Data generated
by users are often highly platform- and/or technology-dependent.
For example, ratings for the same restaurant or hotel may vary
significantly across review platforms [42, 83]. Directly transferring
data from one technology to another as an act of CDC may run
into compatibility issues and even negatively affect the recipient’s
performance. There is a need for researchers and practitioners to
develop software that automatically translates data generated using
one technology into data can truly benefit another technology to
maximize the success of CDC-based approaches.

Researchers should also seek to better understand the full set
of societal impacts that would result from the widespread use of
data leverage. As we have discussed above, we hypothesize that the
direct effects of actioning data leverage will often involve broadly
positive societal impacts, e.g. improved privacy, better distribution
of the economic benefits from AI systems, more democratic gov-
ernance of AI systems. However, the second- and greater-order
effects of these changes are more difficult to assess, and even some
direct effects may be negative in some cases as highlighted previ-
ously. More generally, data leverage defines a pathway to altering
power structures in the current computing paradigm. Alterations
of power structures in such a complex sociotechnical environment
will almost certainly lead to complex outcomes, and more research
will be needed to understand these potential outcomes.

5.5 Key Policy Opportunities for Data Leverage
Data leverage stands to benefit heavily from regulatory support. As
such, data leverage research should be deeply engaged with policy
by highlighting regulatory approaches that are likely to amplify the
power of data leverage and address its potential negative impacts.
Our taxonomy only scratches the surface of how policymay support
data leverage; we are excited for this important direction of future
work.

Following directly from our assessment of data levers above, we
suggest a variety of ways policy can support data leverage:

• Data portability laws will directly enhance CDC, enabling
users to contribute data they helped generate in the past.

• Right-to-delete laws will enhance data strikes, assuming
these laws also account for the possibility that companies
might “launder” deleted data in model weights.

• Data transparency laws that make data collection more ap-
parent may help foster support for data leverage movements.

We note that these policy suggestions are generally aligned
with policy aimed at addressing privacy concerns. This suggests
a potential “win-win” situation, in which policy simultaneously
supports consumer privacy and enhances data leverage.

Expanding on the above points about data portability and right-
to-delete laws, policy also offers the potential for making it easy
for individuals to use multiple data levers in conjunction with
one another. As mentioned above, there are natural connections
between data strikes and CDC: by moving from one platform to
a new platform, a user can take advantage of both data levers.
However, through regulatory support, it may be possible to engage
in much more elaborate combinations of data strikes and CDC, for
instance deleting only certain pieces of data and transferring over
other pieces of data.

6 CONCLUSION
In this paper, we presented a framework for using “data leverage” to
give the public more influence over technology company behavior.
Drawing on a variety of research areas, we described and assessed
the “data levers” available to the public. We highlighted key areas
where researchers and policymakers can amplify data leverage and
work to ensure data leverage distributes power more broadly than
is the case in the status quo.
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