
Received August 4, 2020, accepted September 1, 2020, date of publication September 4, 2020, date of current version September 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021743

Phantom Malware: Conceal Malicious Actions
From Malware Detection Techniques by
Imitating User Activity
TIM NIKLAS WITTE
Institute of Computer Science, Osnabrück University, 49090 Osnabrück, Germany
G DATA CyberDefense AG, Research and Development, 44799 Bochum, Germany

e-mail: wittet@uni-osnabrueck.de

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG), and in part by the Open Access Publishing Fund of
Osnabrück University.

ABSTRACT State of the art malware detection techniques only consider the interaction of programs
with the operating system’s API (system calls) for malware classification. This paper demonstrates that
techniques like these are insufficient. A point that is overlooked by the currently existing techniques is
presented in this paper: Malware is able to interact with windows providing the corresponding functionality
in order to execute the desired action by mimicking user activity. In other words, harmful actions will
be masked as simulated user actions. To start with, the article introduces User Imitating techniques for
concealing malicious commands of the malware as impersonated user activity. Thereafter, the concept of
Phantom Malware will be presented: This malware is constantly applying User Imitating to execute each
of its malicious actions. A Phantom Ransomware (ransomware employs the User Imitating for every of
its malicious actions) is implemented in C++ for testing anti-virus programs in Windows 10. Software of
various manufacturers are applied for testing purposes. All of them failed without exception. This paper
analyzes the reasons why these products failed and further, presents measures that have been developed
against Phantom Malware based on the test results.

INDEX TERMS Malware, ransomware, user imitation, UI redressing, overlay attacks, BadUSB, obfusca-
tion, behavior blockers.

I. INTRODUCTION
On the one hand, malware detection techniques become more
and more powerful. On the other hand, malware obfuscation
techniques become more developed [1]. In order to evade
detection by signatures of antivirus software hundreds of
packers/decryptors are applied [2]. As a consequence, behav-
ior blockers analyze the execution flow of the program to find
malicious actions [3]. Often, these detection techniques are
based on machine learning algorithms such as a Support Vec-
tor Machine [4]. As a result, malware authors are looking for
new possibilities to overcome these techniques. This situation
is a mutual arms race between malware authors and anti-virus
software producers [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Ana Lucila Sandoval Orozco.

User interfaces are designed to reach the maximum user
comfort. However, design principles responsible for comfort
cause vulnerabilities which can be exploited by an attacker for
bypassing malware detection techniques: This paper presents
the User Imitating technique for bypassing behavior blockers
by mimicking user input (such as keystrokes) to execute ma-
licious actions. This means that software interacts with a user
interface instead of a humane user. There are two variants of
User Imitating presented: the overlay variant and the multiple
desktops variant. Each of the variants conceals every change
of the user interface induced by the simulated keystroke to
prevent that the victim becomes suspicious in a different
way. Examples for this are the existence of opened windows
and that windows pop up. Phantom Malware applies User
Imitating to hide all its malicious actions. Metaphorically
speaking, a Phantom Malware is acting as an additional user

164428 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8727-9483


T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

and masks its actions from the real current user. Both users
are acting concurrently with the difference that the current
user (human) does not notice the activity of the hidden user
(Phantom Malware).

This article is organized as follows: Known attacks against
user interfaces similar to the User Imitating technique are
presented in section II (related work). This section covers the
overlay-based banking trojan, tabjacking and the keystroke
injection attack based on BadUSB. Section III explains the
implementation of both User Imitating variants in C++ for
Windows 10 in detail. The approach of the PhantomMalware
is explored by elucidating the implementation of a Phantom
Ransomware in section IV. In section V the operating system
compatibility of User Imitating is discussed. Besides demon-
strating the insufficiency of state of the art malware detection
techniques, antivirus software is also tested in this section
against a ransomware without User Imitating and a Phantom
Ransomware in order to detect them. Here, both ransomware
are doing the same malicious actions, although the Phantom
Ransomware applies User Imitating to execute these actions.
The results of this evaluation are analyzed in section VI.
In addition, differences between the attacks against user
interfaces mentioned in section II and User Imitating are
enumerated. Section VII covers further improvements for
PhantomMalware. Finally, effective countermeasures against
Phantom Malware are presented in section VIII, followed by
conclusions in section IX.

Malware is employed for criminal purpose such as spying
out sensitive data and blackmailing (ransomware). However,
this paper shall not be seen as a Phantom Malware construc-
tion tutorial for cyber criminals. Instead, it shall raise atten-
tion to the serious threat induced by Phantom Malware on
the general public including operating system manufacturers.
The measures against Phantom Malware, enumerated at the
end of this paper, shall act as an inspiration for others to
implement and develop further ones.

In summary, this paper makes the following contributions:
• Introducing the User Imitating technique for concealing
harmful actions of malware as simulated user behavior.
Two variants of this technique are introduced: overlay
variant and the multiple desktops variant.

• Presenting basic concepts of Phantom Malware by dis-
cussing the implementation of a Phantom Ransomware.

• Explaining specific obfuscation techniques for Phantom
Malware.

• Proposing suitable measures against Phantom Malware.

II. RELATED WORK
This section is used as an overview of the related work on at-
tacks against user interfaces. The attacks are similar to the two
User Imitating variants presented in the subsequent section,
although the subsection A. UI REDRESSING (User Interface
redress attack) will only present attacks based on overlay user
interface components such as buttons and views (onWindows
called: windows). There are no UI redressing attacks employ-
ing multiple desktops [6].

A. UI REDRESSING
UI redressing is a set of attacks based on a modification of
the user interface (e.g. desktop and web page on a browser).
The user shall be tricked into triggering an event uncon-
sciously. This event enables the attacker to bypass security
mechanisms [6], [7]. The following subsubsections present a
specific attack of this set.

1) CLICKJACKING: TABJACKING
Clickjacking as a subset of UI redressing [8]. This subset
consists of attacks like cursorjacking, filejacking and tabjack-
ing. The UI is changed in a way that the user mistakenly
clicks on another UI (user interface) element, such as a button,
which the user did not intend [9], [10]. This subsection will
cover a tabjacking attack for the Android operating system
combined with a touch display. By touching on a UI element,
an OnClick event [11] is generated. As shown in Figure 1,
a malicious application with only minimal rights is able to
exploit the unconscious click by the user to an unintended
UI element, so that the user buys an unwanted app from the
Google Play Store. By default, the malicious application is
not able to buy an app from the Google Play Store. The
app bought by the user has been created by the attacker.
Also, it is chargeable so that the attacker achieves a financial
profit [12].

Figure 1. Tabjacking: The victim is fooled into buying an unwanted,
chargeable app from the Google Play Store.

In the beginning, the malicious app is started by the user.
The app creates a full screen view in the foreground. A
view is a rectangular area on the screen which is responsible
for event handling and drawing. Additionally, it contains
UI components such as buttons and text fields [13]. The
malicious app opens the preinstalled Google Play Store app in
the background. The view of the malicious app overlays the
opened Google Play Store app. As a result, the user does
not notice that the Google Play Store app is opened. The
chargeable app of the attacker is selected in the Google Play
Store app. Furthermore, the Google Play Store app contains
the button Buy for 50 $. If the user clicks on that button
(by touching on it) the chargeable app will be installed on
the system. By then, the user will have already paid for the
installation. The view of themalicious app contains the button

VOLUME 8, 2020 164429



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

Click me. This button and the button of the Google Play Store
have the same relative positions: In other words, the button
of the malicious app is placed over the button of the Google
Play Store. The malicious app’s view is transparent for any
UI events including OnClick [11] events. UI events will
occur in the Google Play Store’s view instead of themalicious
app’s view. Screen coordinates of this event are unchanged.
As a consequence, if the user clicks on the button Click me
the related UI event will occur on the underlying button
Buy for 50 $. The user unintentionally buys the chargeable
app of the attacker. Afterwards, the Google Play Store app is
closed. The view in the foreground will be closed by the user.
The user is baited to click on the button Click me by fooling
them to believe to be participating in a raffle for an iPad.
Over and above, social engineering is applied for this attack,
too [8].

Tabjacking attacks are not limited to install unwanted
software. These attacks can be applied for executing ac-
tions for which there exists a UI element on an already
installed app: By pressing on this UI element the action
is executed. For instance, call a predefined phone number,
change the account settings, give access to microphone and
webcam, etc. [8], [10].

Desktop-based operating systems such as Windows are
not vulnerable for the tabjacking attack. The UAC (User
Account Control) on Windows prevents this attack: If the
user changes the security level of the system by modifying
a registry key or disabling the firewall, the UAC opens a
dialog box on an additional desktop. The current desktop is
set to this desktop. The user must enter their password to
confirm this change. Only the UAC is able to interact with
the desktop. The malicious app doesn’t have the privileges
to open a window on the desktop created by the UAC [14].
The icon of the window, opened by the malicious app, will
appear in the taskbar. Opening a window inWindows induces
a pop up. This window is presented in the foreground and has
keyboard focus whichmakes the user perceive it immediately.

2) OVERLAY: BANKING TROJAN
This subsection is focused on Android because overlay-based
banking trojans often occur on this operating system [15].
An overlay is a feature of user interfaces: A mobile app is
able to place an additional view layer over another app’s view
layer [16], [17]. With the overlay feature, interacting with
multiple opened apps at the same time shall become more
comfortable for the user [18]. However, an overlay is able
to intercept user input such as key events that was originally
intended for the underlying view (other app). The overlay
feature provides an opportunity for malicious apps (malware,
here: banking trojan) to steal login data [16].

Figure 2 presents a banking trojan which applies an overlay
view for stealing login credentials. The trojan waits until the
user opens a specific application which requires a login. In
this case, the application is a banking app. Firstly, an overlay
view is created by the trojan which then is placed on top of the
banking app’s view. The overlay view stays in the foreground

Figure 2. Overlay-based banking trojan monitoring login data.

while the banking app view stays in the background, both
having the same appearance. In other words, these views have
the same view properties (e.g. size, style etc.) and contain UI
components such as text boxes which look alike. Over and
above, both views are optically indistinguishable from each
other. As a consequence, the user is fooled into believing that
the overlay view on top of the banking app is the real/original
one [19]. It is worth noting that the trojan is not scanning the
banking app’s view to copy its appearance. In fact, the view
appearance was predefined during trojan creation [18].

The user enters their login data in the login fields (text
fields for username and password) of the overlay view. Each
character of the login credentials will be monitored by the
trojan. To maintain this deception, the trojan relays each of
the characters entered in a text field of the overlay view to
the corresponding original text field of the banking app view.
For instance, the characters entered in the ‘‘Username’’ text
field of the overlay view are relayed to the ‘‘Username’’ text
field of the banking app view. The relay is induced by sending
key events to the banking app view’s text field. If the user
presses the Login button of the overlay view, the OnClick
event [11] for the Login button of the banking app viewwill be
mimicked. The captured login data will be sent to the attacker.
Afterwards, the overlay view closes and the banking app view
is placed in the foreground again. Due to the banking app view
having received an OnClick event [11] for its Login button,
the app will process the username and password relayed by
the trojan. In hindsight, the user does not notice that their
login credentials have just been stolen [19].

The overlay attack for stealing login data will not occur on
desktop-based operating systems such as Windows. Instead
of installing an application for the login process, the user
visits the corresponding web site and logs in there. For
gathering the information of the current visited website on
Windows, the malware must interact with the browser by
reading browser process memory. This is a malicious action.
On Android, the malware (trojan) must only list all running
apps and check if a specific app (here: Banking App) is open.

B. KEYSTROKE INJECTION BASED ON BADUSB
USB devices are embedded with microcontrollers which in-
clude a CPU and sometimes even a bootloader. The CPU is

164430 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

executing the firmwarewhich defines responses to requests of
the host (USB controller). The bootloader enables the device
to load firmware such as updates [20].

A BadUSB device is a USB device mimicking an addi-
tional, hidden (not obviously visible) USB device. This hid-
den device does harmful actions such as keystrokes injection
caused by faked key events of a keyboard. Due to firmware
modifications done by the attackers, the USB controller is
fooled into perceiving the plugged USB device as a ‘‘key-
board’’ during its installation. However, there is no authenti-
cation process: The attackers only exploit the trust-by-default
design principle of USB [21]. The device additionally de-
scribes itself as it ‘‘actually looks like’’ e.g. mass storage
in case of a USB stick, preventing the victim of becoming
suspicious. This, again, is a social engineering technique: The
victim is convinced that their plugged-in USB stick (BadUSB
device) is ‘‘only’’ a mass storage. The only expectation of the
victim is to see a window pop up allowing them to interact
with the mass storage such as transferring files on it.

Figure 3 shows the injection process of a single keystroke
induced by a mimicked keyboard of a BadUSB device.
As mentioned above, the USB controller is deceived into
perceiving the plugged BadUSB device as a ‘‘keyboard’’.
USB devices are only capable of transferring data on the
bus if there is an explicit request by the host (USB con-
troller) [22]. The USB controller communicates with the
‘‘keyboard’’ by employing interrupt transfers which is a data
transfer mode of a USB device. Further, it checks in regular
time intervals (polling requests) if a key event (key state
change to press or release) has occurred. The polling rate of
a USB keyboard amounts to approximately 1000 Hz: Every

Figure 3. A mimicked keyboard by a BadUSB device injecting a single
keystroke.

millisecond, the USB controller checks the keyboard for a
key event. For injecting a single keystroke, a key pressed
event and its corresponding released event must bemimicked.
In order to emulate a key event, the ‘‘keyboard’’ responds
to the polling request of the USB controller with this key
event. The USB controller stores the data received by the
‘‘keyboard’’ which writes the occurred key event into its
memory. Thereafter, the USB controller signals an interrupt
request [23] hence, the CPU calls the corresponding Interrupt
Service Routine (ISR) which was predefined by the ‘‘key-
board’’ driver during the ‘‘keyboard’’ installation process.
This ISR reads out the data which decodes the key event from
the USB controller [24]. Following, the operating system
(here: Windows) generates internal messages [14] such as
WM_KEYDOWM [25] and WM_KEYUP [26]. These keystroke
messages will be stored in the System Message Queue. The
system processes will then send these messages to the win-
dow which currently has keyboard focus [27]. Receiving the
messages will cause a specific reaction in the window, e.g.
the insertion of a character into the window’s text box.

Often, keystrokes injection based on BadUSB is used
to drop malware on the victim’s machine [28]. A terminal
window is opened by emulating a corresponding keyboard
shortcut. Hereafter, keystrokes are simulated in order to insert
the command and confirm it for execution. The command
will download and execute the malware. Because of the
‘‘fake keyboard’’, for the operating system it looks like the
keystrokes causing these actions are induced by the user. In
other words, the operating system including anti-virus soft-
ware is fooled into perceiving a legit basis for these actions,
i.e. that the ‘‘user’’ themselves is executing the actions.

Due to the polling rate of a USB keyboard, the simu-
lated keystroke sequence is about 1000 keystrokes per sec-
ond. A common way to install malware by BadUSB
on the victim’s machine is to download it from a
web server. Thereafter, the downloaded malware will
be launched. The following command on Windows will
download an (executable -. exe) file from a web server
and launch it: powershell -command “& {iwr
[download link] -OutFile [file path]}” &
“[file path]” [29]. Without the download link
and file path the total command has a length of 40 char-
acters. Assuming that the download link and file
path together have less than 960 characters, the total attack
is finished in less than one second. Although this (one second)
seems fast, the victim is able to see the popped-up terminal
window and becomes suspicious. The keystroke injection
attack can be disturbed if both the victim and the BadUSB
device type concurrently as then, the keystrokes are mixed.
The typed command in the terminal is inconsistent due to
some characters typed by the user and some characters typed
by the BadUSB device. An error message will be displayed
and the intended command will not be executed. It may also
happen that, while the BadUSB device simulates keystrokes,
the user changes the window focus by clicking on another
window. As a result, the simulated keystrokes take effect

VOLUME 8, 2020 164431



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

in the other window. For example, it is displayed in the
browser’s search box instead of in the terminal. In both cases,
the victim would notice the attack and become suspicious.

III. USER IMITATING
Instead of applying mimicked hardware keystrokes for drop-
ping malware, User Imitating conceals the execution of a
malicious command by sending messages to an input box.
As these messages represent key events for this input box,
each character of the command will be inserted there. The
input box is able to execute the inserted command. The
corresponding window, containing the input box, must be
opened beforehand, for instance Run Dialog Box (RDB),
Windows Explorer (WE) etc. In the following subsections,
the implementation of this technique in C++ for Windows
10 will be explained in detail.

C++ is able to interact with the WinAPI (Windows Appli-
cation Programming Interface). It also provides performance
improving features such as loop unrolling and function inlin-
ing [30]. Of course, also other programming language can
be applied. The only requirement is that the programming
language must be able to interact with the WinAPI, for in-
stance C#. Windows is the most used operating system for
desktop computers worldwide [31], Windows 10 being its
latest version.

However, there are two different variants of User Imitating:
Each of these variants conceals the existence of the window
containing the input box and also eliminates all caused disad-
vantages by key event simulationmentioned in the last section
in a different way.

A. OVERLAY VARIANT
The variant of User Imiating presented in Figure 4 opens a
full screen window (called overlay) with the topmost (always
on top) window property. Thereafter, the RDB window is
opened. It contains an input box capable of command ex-
ecution. After the inserted command in the input box is
confirmed for execution, a CMD window opens. However,
both windows will not pop up upon opening but will al-
ways stay in the background and behind the overlay. This is
due to the overlay’s topmost window property. In addition,
the overlay contains a screenshot that had been taken before
it was opened. The victim is fooled into perceiving that this
screenshot is the desktop screen because they only see the
full screen size overlay (desktop screenshot) in the desktop
foreground. The existence of both windows is hidden from
the victim.

The detailed implementation of the User Imitating variant,
that is based on an overlay, is displayed in Figure 5. Firstly,
a screenshot of the desktop is taken l1 . The currently fo-
cused window will be identified by applying the WinAPI
call GetForegroundWindow [32]. This window is later
called actually focused window l2 . Subsequently, an ad-

ditional thread starts l3 which the overlay will be created
in lA . It has the following properties:

Figure 4. Overlay suppresses the displaying of the RDB window and the
popped up CMD window.

Figure 5. Implementation of the User Imitating overlay variant.

• Visible.
• Full screen size.
• Position at (0,0).
• Focusable (able to receive user input).
• Undecorated (no window title bar).
• Always on top (HWND_TOPMOST Z order state) [33].

Due to the opening of the overlay, this window is auto-
matically brought into focus. After the screenshot was taken
in step l1 , it will be loaded into the overlay lB . The
thread stays in the overlay’s message loop: If the overlay

164432 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

receives messages representing key and mouse events such as
WM_KEYDOWN [25] and WM_LBUTTONDOWN [34], the mes-
sages will be relayed to the actually focused element by
applying SendMessage [35] lC . If the overlay receives
a WM_ACTIVATEAPP [36], the actually focused element is
set to the current focused element (of the focused window).
The operating system Windows sends this message to those
windows that have lost their keyboard focus. In order to deter-
mine the focused window, GetForegroundWindow [32]
is applied. For identifying the current focused ele-
ment of this window, GetGUIThreadInfo [37] is
applied: The PGUITHREADINFO [38] is passed to
GetGUIThreadInfo [37]. Following the function call,
the hwndFocus value of the struct represents the current
focused window element. After the actually focused element
was updated, the keyboard focus is set to the overlay by
using the WinAPI call SetForegroundWindow lD [39].
Any focus changes, that occur while the overlay is open,
will be detected and key and mouse events will be relayed
to the new focused window element, for instance an opened
window.

After the additional thread has been started, the Window-
Monitor is employed: This helper object returns a list of win-
dow handles which are opened during the measure interval
of the WindowMonitor. However, there must be a synchro-
nization with the additionally created thread: The overlay
window must be created in the main thread even before the
WindowMonitor starts listening (beginning of its measure
interval) l4 . Afterwards, there is a mimicked keyboard short-
cut of + which opens the RDB l5 : After the first
key press there is a waiting time of about 10ms. Then, the sec-
ond key is pressed. After another waiting time of about 10ms,
both keys are released. The operating system needs time to
process these key events. Nevertheless, the mentioned wait-
ing times depend on the victim’s computer speed. To imitate
hardware keystrokes by software, the SendInput WinAPI
function [40] is employed. The opening of the RDB window
will bring it into focus automatically. However, the update
mechanism for the actually focused element in the additional
thread lD ignores this window. In other words, the actually
focused element must not be the RDB’s input box as then,
inserted command characters and characters typed by the user
will be mixed up. This will cause an inconsistent command
that is unable to execute. After a waiting time of about 20 ms,
the WindowMonitor stops listening (end of its measure inter-
val) l6 . This waiting time secures that all system processes
responsible for message handling have perceived the opened
RDB. The list, returned from the WindowMonitor, shall con-
tain only one element - the window handle (HWND) of the
RDB. Otherwise, the HWND of RDB will be searched for
in this list by employing GetWindowTextA [41] for each
element. The returned string is compared to Run, although it
is language specific.

The HWND of RDB’s input box will be identi-
fied by determining its focused window element l7 .

GetGUIThreadInfo [37] is applied for this determination
(see above). Following, the command string will be inserted
into the input box by sending a corresponding WM_CHAR

message [42] l8 for each of its characters. Instead of insert-
ing each command character in a sequence, a WM_SETTEXT
message [43] containing the total command can be sent to
this input box. Intending to execute a CMD command, the in-
serted string has the following form: cmd.exe /c [CMD
command]. Another alternative is the execution of Power-
Shell commands. To avoid race conditions, SendMessage
must be used for this command insertion and other out-
going messages instead of PostMessage. In contrast to
PostMessage, the WinAPI call SendMessage does not
return until the receiving window has processed the mes-
sage [35], [44]. As a consequence, there is no waiting time
required between the sent command characters. After the
command insertion, the command is confirmed for execution
by sending a WM_KEYDOWN message [25] with to the

RDB’s input box l9 . The RDB window closes and the CMD
window opens. The latter automatically closes after approxi-
mately 500 ms. In order to conceal the existence of this CMD
window, there is a waiting time of about 500 ms. After this
waiting time, the CMD window is closed. The waiting time
duration always depends on the victim’s computer speed.
As the next step, the additional thread terminates and the
overlay is closed l10 . The closing of the overlay causes that
no window is currently focused. Finally, the actually focused
window is set on keyboard focus by applying theWinAPI call
SetForegroundWindow l11 [39].

Overall, the windows of the RDB and CMD are suppressed
to pop up as they are forced to stay in the background by the
overlay’s HWND_TOPMOSTZ order state [33]. Upon its open-
ing, the overlay remains in the desktop foreground. It contains
a desktop screenshot that had been taken before the overlay
was opened. Therefore, the victim is fooled into perceiving
that the overlay is the actual desktop screen and that the
focused window in the screenshot, displayed by the overlay,
is the actually focused window. As presented in Figure 4,
the victim is fooled into thinking that the webbrowser is
the focused window. The existence of the RDB and CMD
windows is hidden from the victim, however, the total screen
is frozen while the overlay is open. In total, the overlay is
open for less than one second. In case windows are opened
that contain frequently changing graphical elements such as
video boxes, the victim becomes suspicious. Although the
victim sees a frozen image of the video, they are able to hear
the corresponding volume. The window containing the video
box is suppressed to stay in the background, while the overlay
window (containing a screenshot) is in the foreground. A
common user behavior to a frozen screen is pressing keys
to force a reaction. The overlay window catches all of these
inputs and relays them to the actually focused window in the
background. After the overlay window is closed, the victim
notices that the keystrokes were, in fact, processed by the
focused window (previously in the background). It could, for

VOLUME 8, 2020 164433



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

example, be that the keystrokes are displayed in a textbox.
Overall, the victim is fooled into thinking that the frozen
screen is caused by a temporary fault of a system process
that is responsible for window displaying. Besides, the total
input capture by the overlay prevents a disturbance by the user
while the command is inserted in the RDB’s input box. As
mentioned in the previous section, the user would otherwise
be able to type in the RDB’s textbox while the command is
being inserted.

Instead of opening the RDB, the Windows Explorer could
also be opened with the keyboard shortcut + ,
although, the attack must be modified as explained below.

B. MULTIPLE DESKTOPS VARIANT
This variant of User Imitating creates an additional desktop.
The Windows Explorer (WE) will be opened on this desktop.
Afterwards, the command will be inserted into its input box
and confirmed for execution by sending corresponding Win-
dows Messages. Alternatively, the RDB could be employed.
The total implementation is shown in Figure 6.

First of all, the additional desktop is created by applying
the WinAPI function CreateDesktopA [45] l1 . Instead
of creating an additional desktop, an already existing desktop
may be used. The already existing desktop, however, must
not be active (not being on focus) at that time. Accordingly,
the main thread is assigned to this desktop by employing
SetThreadDesktop [46] l2 . This thread assignment
enables the WindowMonitor to receive information about
opening windows on the additional desktop. Next, the Win-
dowMonitor starts to listen l3 . To open the WE window on
the additional desktop, CreateProcessA [47] is called:
The value lpDesktop of the STARTUPINFOA struct [48]
as transferred parameter is a pointer to the additional desk-
top’s name l4 . The name was defined in step l1 . After a
waiting time of approximately 20 ms, the WindowMonitor
stops to listen l5 . The waiting time secures that system pro-
cesses, responsible for window message transmission, per-
ceive the opening of the WE window [14]. The list returned
by the WindowMonitor shall contain only one element - the
HWND (window handle) of the WE window. Afterwards,
SendMessage [35] is applied to send a WM_KEYDOWN
message [25] with to theWEwindow in order to bring its

input box into focus l6 . Due to assigning the main thread to
the additional desktop in step l2 , messages can be sent by this
thread to windows on the desktop. Following a waiting time
of about 25 ms, the HWND of WE’s input box will be deter-
mined by identifying the focused window element of the WE
window l7 . This waiting time secures that system processes
for desktop management [14] perceive the focus change.
After the WE receives a WM_KEYDOWNmessage [25] of ,
it starts a ‘‘scrolling animation’’ by showing listed directories
before its input box gets editable. According to a waiting time
of approximately 1000 ms, twelve (length of default text, see
below) WM_KEYDOWNmessage [25] with are sent to this

Figure 6. Implementation of the User Imitating multiple desktops variant.

input box to remove its default text l8 . In the English version
of Windows 10 this text is Quick access. As described in
the last subsection, the command string will be inserted into
the WE’s input box l9 . Afterwards, the inserted command
will be confirmed for execution by sending a WM_KEYDOWN
message [25] with to the input box l10 After the attack,

the WE window on the additional desktop is closed l11 . The
additional desktopwill be closed by applying theWinAPI call
CloseDesktop [49] l12 . However, steps l11 and l12 must be
skipped if there is an intention to execute multiple commands
in a sequence. Both steps prevent the displaying of an error
message during the shutdown of the victim’s computer.

TheWinAPI call SendMessage [35] must be applied for
command insertion in WE’s input box and for its confirma-
tion for execution. As the additional desktop does not possess
keyboard focus, simulating hardware keystrokes by using the
WinAPI call SendInput [40] does not work for command
insertion and its execution. Also, the keyboard shortcut

and for opening the WE window does not work.

164434 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

IV. PHANTOM MALWARE
Similar to the User Imitating implementation, the Phantom
Malware implementation is an exemplar presented in C++
for Windows 10. As shown in Figure 7, Phantom Malware
executes all of its malicious actions by applying the User Im-
itating technique: A WE window is opened on the additional
desktop l1 . The command in the WE’s input box is inserted
and confirmed for execution l2 . As a consequence, the WE
process launches a CMDprocess l3 which executes the com-
mand l4 . In addition, the result of the executed command is
redirected to a file by employing the > operator l5 [50]. The
string, inserted in theWE’s input box, has the following form:
cmd.exe /c [command] > C:/.../output.txt
The path to this txt file must be absolute. Moreover, this file
must be hidden from the victim by setting its file attributes to
hidden [51] with attrib.

Figure 7. Overview of Phantom Malware.

The Phantom Malware reads this file by employing the
WinAPI function ReadFile [52] and analyses its content
which represents the command output l6 . For example,
the CMD command move would not return anything if
the command is executed successfully. Otherwise, an error
message [53] is contained in the command output. If the
file (where the output of this command is redirected to) is
empty, the command was executed successfully. Due to the >
operator overriding the whole file content [50], the same file
can be used again if there is an intention for an execution
of multiple commands sequentially. Otherwise, the file must
be deleted in order to cover tracks. Overall, the file is acting
as a hidden information channel for the Phantom Malware,
containing the outputs (results) of its executed commands.
Instead of redirecting the command output to a file and
reading the file to receive the information, the WinAPI call
ReadConsoleOutput [54] can be applied. This WinAPI
call is able to read the printed text (here: command result)
in the popped-up CMD window, after the inserted command
was confirmed for execution.

To increase the execution speed, the & operator [55] is ap-
plied to run multiple commands in one line at the WE’s input

box. The RDB’s input box has a capacity of 259 characters
and the WE’s input box has a capacity of 2047 characters. If
the inserted command in the RDB’s input box is confirmed
for execution, its window closes. The WE window does,
however, not close after confirming the command in its
input box. Due to the increase in execution speed of the
Phantom Malware, the command is inserted into the WE’s
input box instead of the RDB’s input box. It is not practical
for Phantom Malware to employ the overlay-based variant
of User Imitating for masking all its malicious actions. If
there are thousands of commands to execute (such as in
the case of all victim’s files being encrypted), the victim’s
screen is blocked for more than approximately two minutes:
The victim is unable to interact with the windows on their
desktop and becomes suspicious. However, operating sys-
tems such as Linux do not provide API calls for additional
desktop creation and starting processes on this additional
desktop by default - only terminal commands are provided.
Hence, Phantom Malware applies the overlay-based vari-
ant of User Imitating to launch itself on the additional
desktop. This point is explained in section V. Evaluation
in detail.

A. EXAMPLE: PHANTOM RANSOMWARE
A Phantom Ransomware is a ransomware which employs
the mentioned concept of Phantom Malware: All malicious
commands are executed by applying the User Imitating
technique. The output of the corresponding command is
redirected to a file. It will then be analyzed if the com-
mand is executed successfully. The following subsubsections
present the implementation of typical actions of Phantom
Ransomware.

1) SET UP FOR ENCRYPTION: PREVENT FILE RESTORING
By disabling the following two system tools the victim
is unable to restore its original files after encryp-
tion [56]. To disable the startup repair functionality of Win-
dows, the command bcdedit.exe /set {default}
recoveryenabled no > C:/.../output.txt is
executed [57]. Afterwards, all shadow copies are deleted
by running the following command: vssadmin.exe
delete shadows/all/quiet> C:/.../output.
txt Shadow files are employed for restoring accidentally
overwritten files [58], [59]. After each executed command,
the file content of C:/.../output.txtmust be checked
for errors that may have occured.

2) FILE ENCRYPTION
The process of file encryption by Phantom Ransomware is
displayed in Figure 8. For the following section, it is assumed
that the file foo.jpg shall be encrypted by the Phantom
Ransomware.

First of all, the ransomware copies the file to another
folder (here: C:/bar) while renaming it to abc by applying
the command copy C:/Pics/foo.jpg C:/foo/abc

VOLUME 8, 2020 164435



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

Figure 8. File encryption by Phantom Ransomware.

/y > C:/../output.txt Afterwards, the redirected
output of the command in C:/../output.txt will be
analyzed if an error occurred such as not having access rights.

The Phantom Ransomware reads the file abc without
employing User Imitating. The corresponding encrypted file
content will be determined. Thereafter, User Imitating is
applied to overwrite foo.jpg with the encrypted content.
To overwrite this file, the command (echo [encrypted
file content] > C:/Pic/foo.jpg) > C:/../
output.txt is used, although its length is not allowed to
exceed the mentioned character capacity of the WE’s input
box. If that is the case, multiple echo commands must
be executed. The first echo command is to overwrite the
whole file with a part of its encrypted content by using the >
operator. Further echo commands apply the � operator
instead of > [50]. In others words, each of these commands
appends a part of the encrypted file content. Each output of
the echo commands is redirected to C:/../output.txt
and read by the Phantom Ransomware. This is done to detect
any errors that may have occured during file overwriting, for
instance no file writing privileges.

Every file to encrypt is renamed toabcwhile being copied.
Because the file abc already exists, its previous file content
will be overwritten completely with the content of the copied
file (in Figure 8: foo.jpg). User Imitating is applied for
concealing this copy command and the overwriting of the
copied file as user activity. As a consequence, for operating
systems and anti-virus software it looks like the same file
(abc) is read in a sequence by the Phantom Ransomware
and the victim overwrites (encrypts) their own file. Before
the encryption process, the file abc must be created with
the WinAPI call CreateFileA [60] (no User Imitating
employed) by the Phantom Ransomware. This file is directly
related to the ransomware process. It is less suspicious if the

ransomware constantly reads its ‘‘own’’ created file rather
than a file created ‘‘by the user’’ (User Imitating) or of another
process. The file abc does not need a file extension as this is
not required.

3) CONNECTION TO ITS C&C-SERVER
A server connection such as receiving orders or upload-
ing data to the C&C-Server based on CMD commands
is not possible [61]. Therefore, a script (here: Python)
will be dropped by using the following command echo
[create socket, read data from it, print
data, close socket] > C:/.../GetOrders.py
The script connects to a server, prints out the received data
(or otherwise an error message) and closes the connection.
At all times, the script shall be hidden from the victim. In
addition, Python must be installed on the victim’s machine-
the existence of a Python version installed on the victim’s
machine must be checked and also obfuscated. Furthermore,
if the script size exceeds the character capacity of WE’s input
box, multiple echo commands must be employed for its
creation.

Afterwards, the python script will be launched by run-
ning the command python C:/.../GetOrders.py
> C:/.../output.txt The Phantom Ransomware re-
ceives orders from its C&C-Server by reading C:/.../out
put.txt. In case of an error, the file contains an error mes-
sage instead. Subsequently, the script file is deleted in order
to cover tracks. Network analysis tools such as TCPView [62]
are not able to trace the connection of the Phantom Ran-
somware with the C&C-Server. The WE is manipulated to
execute the script as one of its child processes. This particular
child process terminates after a very short time (about 1 ms)
because its executed script only requests data from a server.
The data has an approximate length of 10 bytes (decoded
orders from C&C-Server).

To send data to the C&C-Server, a script similar to the
script mentioned above is applied: Instead of reading data
from a socket, this script writes data to a socket and prints
a failure message in case an error occurs. Accordingly,
the redirected output of the launched script (send result) in
C:/.../output.txt is analyzed on whether the data
was successfully sent or not.

Instead of dropping and executing a script, it is possible
to execute an inline script. Inline script means that the whole
script fits into a single line as only one command. As men-
tioned above, its length must not exceed character capacity of
WE’s input box.

B. OBFUSCATION TECHNIQUES
1) ENCRYPT COMMANDS
Memory scanners of anti-virus programs dump and analyze
the process memory for specific patterns (signatures) during
the process run time. As a consequence, commands (includ-
ing dropped scripts) in form of strings in Phantom Mal-
ware’s memory will be found by these scanners. To prevent a

164436 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

detection of signatures by memory scanners based on these
applied commands, the commands must be encrypted. As
mentioned above, the command string will be inserted into
the WE’s input box by sending a corresponding WM_CHAR
message [42] to this input box for each of its characters.
Therefore, it is possible that the total command string exists in
encrypted form in memory during run time: Each character of
the command string will be decrypted and sent to the WE’s
input box. Before decrypting the next character, the current
one in memory must be overwritten. Hence, during run time
there exists only one decrypted character of the command
string in process memory at a time.

As an example, the command (inserted in the WE’s in-
put box)cmd.exe /c move X Y > Zwill be encrypted
during creation of the Phantom Malware and stored in pro-
gram memory as a character array data structure. Never-
theless, the command arguments are file paths which vary
for every computer. As a result, X, Y and Z are placeholder
characters representing these file paths. The file paths are
determined before the command is inserted into the WE’s
input box. Instead of the placeholder character, its represent-
ing file path will be inserted into the WE’s input box. For
each character of the file path a corresponding WM_CHAR
message [42] will be sent to the WE’s input box. However,
these file paths do not have to be encrypted.Memory scanners
usually do not apply signatures based on file paths because it
is considered bad practice.

2) RANDOMIZE INSERTED COMMAND
As mentioned above, commands are connected together in
one line at the WE’s input box by employing the & opera-
tor [55]. To increase the effort in creating predefined patterns
of behavior blockers in order to detect Phantom Malware
based on inserted characters, the number of commands, con-
nected in one line, is randomized. In addition, the connection
order is randomized, although data dependencies must be
noticed.

Phantom Malware can be detected by monitoring
WM_CHAR messages [42] sent by a process. Based on the
monitored messages, the inserted command (inserted into a
text box capable for command execution such as WE’s input
box) will be determined and analyzed for malicious behavior.
A scan of the inserted command to a harmful action is
necessary in order to prevent a false positive classification as
Phantom Malware for tools used by physically incapacitated
people. These tools insert harmless commands into the WE’s
input box, for instance voice control. In order to prevent
a detection by this technique, the DOSfuscation technique
is applied to obfuscate each command as explained in the
following. DOSfuscation hides the actual CMD command by
changing its length and character sequence while the result of
its execution remains unchanged [63].

Each command exists in encrypted form in the program
memory. The decryption process is done during the creation
of the Phantom Malware. The number and order of the com-
mands which are connected together in a line by applying

the & operator is determined randomly. Each command is
decrypted and obfuscated by applying DOSfuscation. This
obfuscation is random, for instance the command will be
obfuscated by inserting a random amount of ˆ characters. A
ˆ character is an escape character inMS-DOS [61]. However,
the obfuscation must not change the placement characters
which represent arguments of the called commandwhich vary
from user to user (such as file paths). Furthermore, the com-
mand will be stored in memory in encrypted form. Before
decrypting and obfuscating the next command, the current
decrypted command must be overwritten. In other words,
during command obfuscation there exists only one decrypted
command in program memory at a time. Before decrypting
the next command, the current command is encrypted im-
mediately after its obfuscation. This reduces the risk to be
detected by memory scanners. Next, the total command is
inserted as described in the previous subsection. The inserted
command is being monitored by the detection technique.
Before the command is checked for malicious actions, it must
be deobfuscated (converted back to the original command),
although this is a time-consuming process.

3) RANDOMIZE INSERTION SEQUENCE OF COMMAND
CHARACTERS
Instead of inserting each character of the command in its
actual order (left to right), the Phantom Malware randomizes
the order in combination with a corresponding movement of
the WE’s input box caret position (insertion point).

To look at an example: The text test shall be inserted
into the WE’s input box as shown in Figure 9. The order
of the character insertion will be randomized as explained
hereunder. Based on this order, corresponding movements of
the caret position are determined. In the beginning, the WE’s
input box contains blank text and the caret is on the first
insertion position l1 . The character e is inserted into the
input box l2 . The caret of this input box will be moved back
to the first insertion position (behind the character e) l3 . A
corresponding EM_SETSELmessage [64] is sent to this input
box, in order to set its caret to a specific position. After the
letter t is added l4 , the caret of the input box is set to the third
insertion position (behind the character e) l5 . Accordingly,
the character t is inserted into the input box l6 . WE’s input
box caret is moved to the third insertion position l7 . Finally,
the character s is added l8 to the input box.
As a result, the effort for determining the command,

inserted into theWE’s input box, is increased for the Phantom
Malware detection technique mentioned in the previous
subsubsection. Besides monitoring sent WM_CHAR mes-
sages [42] to determine the inserted command, EM_SETSEL
messages [64] must be recorded.

4) SUSPICIOUS AMOUNT OF SENT WM_CHAR MESSAGES
Phantom Malware sends thousands of WM_CHAR mes-
sages [42] to mask the execution of all its malicious actions.
For instance, the process of encrypting a single file by the

VOLUME 8, 2020 164437



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

Figure 9. Inserting the text test into WE’s input box based on a random
character insertion order with a corresponding movement of the caret
position. The caret position is highlighted red.

PhantomRansomware as presented in Figure 8 requires send-
ing about 50 WM_CHAR messages [42]. In order to overwrite
this file, a WM_CHAR message [42] must be sent by the
Phantom Ransomware for each byte of the new file content
additionally.

Nevertheless, for a process, the total amount of sent
WM_CHAR messages [42] is suspicious. This is because there
would not be a practical use for such an amount of sent
messages. Phantom Malware could be detected by counting
WM_CHAR messages [42] sent by a particular process. This
process and its launched child processes share the same
WM_CHAR message [42] counter with the goal to prevent
a bypass of this technique. A bypass would be to apply
child processes which insert only part of the command. The
amount of WM_CHAR messages [42] sent by these processes
is checked for if a predefined threshold is exceeded. The
threshold defines a suspicious amount of sent WM_CHAR
messages [42]. For expository purposes, it will be assumed
in the following that the threshold is set to 40 sent WM_CHAR
messages [42]. In order to evade this detection technique,
the Phantom Malware sends these messages by using mul-
tiple processes as presented in Figure 10. The parent/child
process relation between the Phantom Malware and its child
processes is concealed by applying User Imitating.

Each of the launched processes sends messages to the
WE’s input box in order to insert only a part of the
total command. The final command is very long (approxi-
mately 2000 characters) because it contains commands con-
nected together in a line at the WE’s input box by using
the & operator [55] until reaching the character capacitiy
of this input box. As mentioned in the previous subsub-
section, the number and the order of these commands
is randomized. Each of these commands will be ran-
domly obfuscated by employing DOSfuscation. Thereafter,
the Phantom Malware creates a file by applying the WinAPI

Figure 10. Conceal suspicious amount of sent Windows Messages by
employing multiple processes with a masked parent/child process
relation.

call CreateFileA [60]. In this file the encrypted command
and its corresponding key for decryption will be written by
the Phantom Malware using the WriteFile [65] WinAPI
call. Afterwards, the Phantom Malware drops an exe file
which inserts a part of the command if it is launched. The
length of this part is random. User Imitating is not applied for
the file dropping. Following, the Phantom Malware launches
the exe file by applying User Imitating. The employed
command to start this process has a length of approximately
20 characters. Finally, the PhantomMalware terminates itself
(without employing User Imitating).

The launched process (started exe file) reads the stored
encrypted command and key for its decryption, that belong
to the file created by the PhantomMalware. The length of the
inserted command part is determined randomly. The process
sends messages to the WE’s input box in order to insert this
part of the long command. Instead of inserting each character
in its actual order, the characters will be inserted in a random
order in combination with a corresponding movement of
WE’s input box caret as mentioned in the previous subsubsec-
tion. Each character will be decrypted before sending it to this
input box. Before decrypting the next character, the current
character in memory must be overwritten. Before the process
terminates, it starts another process which does the same
actions. The length of the already inserted part will be passed
over by the program argument while launching the next
process (launching the exe file). To start this process, User
Imitating is applied. However, the command for launching the
next process must be inserted and confirmed for execution
by the employed User Imitating technique in the input box

164438 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

of another WE window. Otherwise, the parts of the long
command, that were inserted beforehand, will be overwritten.

This insertion process continues until the long command
has been inserted completely. Let n be the total number of
processes which partly insert the long command in a se-
quence. The nth process triggers the execution of the long
command by sending a WM_KEYDOWN message [25] to the
input box where this long command was inserted initially.
Finally, the nth process terminates itself and launches the
Phantom Malware. User Imitating is employed for start-
ing the Phantom Malware. To reach maximum obfuscation,
the number ofWM_CHARmessages [42] sent by each involved
process must be randomized. Moreover, the number must be
less than 20 due the assumed threshold of 40 WM_CHARmes-
sages [42] which shall not be exceeded. As mentioned above,
the child process sends out about 20WM_CHARmessages [42]
additionally in order to insert a command for starting the
next process. In addition, to conceal a continuous sending of
WM_CHAR messages [42] to the same text box, each process
mixes randomized messages to other windows between its
sent WM_CHAR message [42] sequence. The character in-
sertion order of the two commands (command starting the
next process and the long command) is rotated randomly.
Characters of these two commands are inserted randomly
alternating into the corresponding WE’s input box.

For the operating system and the mentioned Phantom
Malware detection technique it mistakenly looks like the
involved processes are started by the user. This is due to User
Imitating, employed for launching these processes. Hence,
the parent/child process relation between these processes is
masked. The command consists of about 2000 characters.
Each process launched by the PhantomMalware inserts a part
of the command which has a size of less than 20 characters
into the WE’s input box. In total, n is greater than 100.
If a single process starts such an amount of processes by
applying WinAPI calls, it would be seen as suspicious. In ad-
dition, the masked parent/child process relation between the
involved processes for command insertion cause a separate
counting of sent WM_CHAR messages [42] for each of these
processes. The counter for WM_CHAR messages [42] sent by
the Phantom Malware process will be reset. This is due to
the process being terminated and started again after the long
command has been inserted and confirmed for execution. As
a result, the Phantom Malware process will not exceed the
threshold for sent WM_CHARmessages [42]. This also applies
in case of several command executions based on multiples
processes that were completed in a sequence.

Assuming WM_CHAR messages [42] sent by a process
and its launched child processes will be monitored by an-
other Phantom Malware detection technique: The inserted
command (in a text box capable for command execution
such as a WE input box) is determined based on the mon-
itored messages. The command is analyzed for malicious
behavior. However, WM_CHAR messages [42] sent by the
Phantom Malware process and its child processes will be
monitored separately because of the masked parent/child

process relation. Each monitored sent WM_CHAR mes-
sage [42] sequence of the involved processes represents only
a part with about 20 characters of the total inserted com-
mand (approximate length: 2000 characters). The inserted
command was obfuscated by employing DOSfuscation. As a
result, the analysis of the command parts (that were split up)
for malicious behavior will fail. Nevertheless, the inserted
command in the other WE’s input box for starting the next
process will be determined completely. As mentioned above,
the corresponding exe file was created without employing
User Imitating but started by applying User Imitating. Hence,
the operating system and Phantom Malware detection tech-
nique are fooled into perceiving that the user is launching a
exe file created by a process.

To detect PhantomMalware, sentWM_CHARmessages [42]
of all running processes must be monitored. Based on the
monitored messages, the inserted command will be deter-
mined and scanned for malicious behavior. If the inserted
command is malicious then the processes, which sent the
WM_CHAR messages [42] for inserting this command, will
be identified as Phantom Malware. However, monitoring the
total amount ofWM_CHARmessages [42] sent by all processes
reduces the system performance. This stems from the fact
that for message monitoring, a WH_CALLWNDPROCRET [66]
hook is attached to all threads of every running process. This
hook does not provide a filtering option [67] by default.
In other words, each time a process sends out a message,
the hook procedure will be called. Monitoring WM_CHAR
messages [42] which are received by a window (containing
a text box capable for command execution) will only detect
an inserted malicious command. Processes started by the
Phantom Malware which are responsible for this insertion
will not be identified because messages do not have a tag for
identifying its corresponding sender.

C. INCREASE OF EXECUTION SPEED
The Phantom Malware must execute multiple commands
concurrently: As stated in the first subsubsection, for speed
optimization purpose, the & operator [55] must be used to
connect multiple commands in one line at theWE’s input box
until reaching the character capacity of this input box. The
insertion and confirmation for execution of one command
with an approximate length of 2000 characters by applying
the multiple desktops-based User Imitating variant requires
about three seconds. Upon opening the WE window and after
the inserted command in the WE’s input box is confirmed
for execution, the input box’s state is uneditable. Hence,
a WM_KEYDOWN message [25] with must be sent to
this input box in order to set its state to editable. However,
before this input box becomes editable, there is a ‘‘scrolling’’
animation by displaying listed directories. This animation
takes approximately one second. Before inserting the com-
mand, the default textQuick Access (language specific) in the
WE’s input boxmust be removed by sending aWM_KEYDOWN
messages [25] with for each character of this text. In
addition, the WinAPI call SendMessage [35] is applied

VOLUME 8, 2020 164439



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

for inserting each command character. The calling thread is
blocked by this WinAPI call until the receiver window has
processed the corresponding WM_CHAR message [42]. The
thread is blocked for about 1 ms. All in all, the command
insertion needs about 2 seconds (2000 ms).

Assuming a single command (without any & operator [55]
applied) has a length of about 25 characters, a total of 80 com-
mands can be executed withinmore than three seconds. These
commands are connected in one line at theWE’s input box by
using the & operator [55]. If there are thousands of commands
to execute such as in the case of encrypting all victim’s files,
the total encryption process takes several minutes.

As mentioned in the previous subsection, the Phantom
Malware starts one process which inserts a part of the com-
mand in WE’s input box and which itself starts the next
process before terminating. This next process does the same
actions until the command is completely inserted. Instead of
launching one process, the Phantom Malware starts multiple
processes at the same time. In order to avoid race condi-
tions, two WE windows are opened on the additional desk-
top for each of these processes by applying User Imitating.
The command for starting the next process will be inserted
and confirmed for execution in one of the WE windows.
The actual command will be inserted in the other WE win-
dow by the process (launched by the Phantom Malware)
and its child processes. After the actual command is com-
pletely inserted, the child process confirms it for execu-
tion. Finally, the child process terminates. However, only
one child process of those which confirmed the commands
for execution will launch the Phantom Malware before its
termination.

V. EVALUATION
A. OPERATING SYSTEM COMPATIBILITY
As presented in table 1, the following operating systems are
vulnerable for both User Imitating variants: Windows, OS X,
Linux and Solaris In contrast, Android and Qubes OS cannot
be attacked by these variants.

The overlay-based variant has the following general
requirements:

• Creating a full screen window (overlay window).
• Setting the overlay window on focus.
• Opening a window containing an input box where com-
mands can be entered (in Windows: RDB and WE).

• Simulating keystrokes by sending messages to this input
box (other process).

OS X, Linux and Solaris meet these requirements. The
multiple desktops-based variant of User Imitating requires
an additional desktop instead of a full screen window. OS
X, Linux and Solaris do not have operating system specific
API calls for additional desktop creation, like Windows does.
However, these operating systems can be attacked by the
multiple desktops-based variant by employing the overlay-
based variant as a dropper technique:

1) Creating the overlay window.

Table 1. Compatibility of User Imitating variants with operating systems.

2) Opening a window containing an input box where com-
mands can be entered e.g. terminal.

3) Inserting the command into this input box for dropping
the actual Phantom Malware (writing with the echo
command [68] in combination with the redirection
operator [50] bytes to an empty file for creating the
executable), creating an additional desktop and starting
the actual Phantom Malware there.

4) Closing the window.
5) Disposing the overlay window.

The execution of these commands by applying an API call
such as system [69] would be seen as a suspicious action
because the process launches an executable file which was
dropped by itself.

For testing the compatibility of both User Imitating vari-
ants two programs were created for each operating system:
Both test programs only move their own executable file lo-
cated in the desktop directory to the documents directory
for testing purposes. One program applies the overlay-based
variant and the other one employs the multiple desktops-
based variant for this action. Before both test programs are
being launched on OS X from a terminal, a window appears
indicating that these programs apply accessibility features
(here: sending messages presenting keystrokes to the opened
terminal window) as shown in Figure 11.

OS X blocks processes pushingWindowMessages into the
Event Queue of windows by default which do not belong to
the window. Usually, only system/kernel processes have priv-
ileges for this action. In addition, the user/victim is allowed
to define exceptions [70]. After the victim has defined an
exception for both test programs by confirming this message,
the programs will work flawlessly. In other words, both User
Imitating variants will work perfectly. The victim can be

164440 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

Figure 11. Message of OS X before launching a program employing User
Imitating.

fooled into confirming this message by applying a social
engineering technique [71].

Android does not meet the mentioned requirements of
both User Imitating variants. By default, it does not provide
a window with an input box where commands are entered
e.g terminal. To make this operating system vulnerable for
the overlay-based variant, a terminal application must be
installed even before the actual attack. Moreover, instead of
multiple desktops Android provides a multiple tab system:
Only one window can be open at the same time. Every
window is displayed in full screen. A tab represents a full
screen window. After closing a tab of an application, another
tab will be displayed. The user is able to switch between
these tabs [72]. Assuming a terminal application is installed,
the multiple desktop-based variant must be modified to attack
Android: Instead of opening the terminal on an additional
desktop, it will be launched on a tab in the background
hidden from the victim. Android provides a functionality to
display all tabs and switching to a specific tab chosen by
the user/victim. Therefore, the victim will see the terminal
tab and hence also the sequentially inserted characters. As a
result, the victim becomes suspicious because these actions
were not committed by them. Furthermore, if the victim
closes its current active tab, the recently opened tab will be
displayed - this could be the terminal tab. However, it is not
possible to control the next opening of a tab by API calls after
the current active tab is closed, because the tabs belong to
different applictions/processes [72].

Qubes OS cannot be attacked by both User Imitating vari-
ants. This operating system applies a compartmentalization.
In other words, each instantiation of the underlying operating
system such as Linux Debian runs on a different Virtual
Machine (VM). Each VM is completely isolated from other
VMs [73]. As a consequence, it is not possible to open a win-
dow in other VMs containing an input box where commands
are entered. Both test programs cannot propagate into other
VMs. However, both User Imitating variants work on Qubes
OS if only one VM is used.

B. TESTING ANTI-VIRUS SOFTWARE
The described Phantom Ransomware in section IV was
implemented in C++ for Windows 10. In addition,
a corresponding ransomware without User Imitating was
developed. This ransomware employs the same actions as
the Phantom Ransomware: All malicious actions of this

ransomware without User Imitating are executed by apply-
ing WinAPI calls instead. For instance, the Phantom Ran-
somware copies a file by inserting the command cmd.exe
/c copy [source file] [destination file]
> C:/.../output.txt [74] into the WE’s input box. In
contrast, the ransomware without User Imitating employs the
WinAPI call CopyFile [75] for the same action. Overall,
the ransomware iterates over each file of the file system
(except system files) and executes the following actions by
using the WinAPI:

1) Reading the file.
2) Determining the corresponding encrypted file content.
3) Overwriting the file with this content.

Besides, this ransomware was written in C++. A whole
variety of anti-virus software by different manufacturers for
Windows 10 has been tested in order to detect the ransomware
without User Imitating and its corresponding Phantom Ran-
somware. All modules such as behavior blocker of anti-virus
software were active. If there was a configurable security
level of the modules, the maximum level has been selected.
Furthermore, if there was a ransomware protection available,
this security feature was activated. In addition, the default
ransomware protection included in the Windows Defender
was also activated. These tests were performed in July 2020:
All tested anti-virus software was up to date and capable of
detecting the ransomware without User Imitating. However,
none of them was able to detect its corresponding Phantom
Ransomware as illustrated in Table 2.

Overall, both ransomware programs did the same ma-
licious actions but the Phantom Ransomware executed its
actions by applying User Imitating. As a result, User Imitat-
ing prevented the Phantom Ransomware to be identified as
malware.

C. LIMITATIONS
The overlay-based variant of User Imitating creates a top-
most window with full screen size. The window contains
a screenshot that was taken before its opening. Therefore,
while the overlay is open, the total desktop screen looks like
it is frozen. If windows on the desktop contain frequently
changed graphical elements such as video boxes, the victim
notices a frozen image of this video. Besides, they are able
to hear the corresponding volume. However, the victim is
convinced that the frozen image of the desktop is caused by a
temporary fault (lag) of a system process which is responsible
for window displaying. This is due to the overlay relaying ev-
ery received user input (keystrokes and mouse events) to the
actually focused window in the background. After the overlay
window is closed, the victim recognizes that the input has,
in fact, been processed by the focused window. For instance,
the keystrokes are displayed in a textbox. Over and above,
the overlay is open for about less than one second. Therefore,
the attack is barely noticeable for the victim during office
work.Word processing programs such asMicrosoftWord and
Open Office contain textboxes instead of frequently changed

VOLUME 8, 2020 164441



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

Table 2. Anti-virus software attempting to detect ransomware without User Imitating and the corresponding Phantom Ransomware.

graphical elements. However, the caret of these textboxes are
not flashing during the attack. This is a result of the frozen
image of the desktop caused by the overlay containing a
desktop screenshot in the foreground (screenshot was taken
beforehand).

The opening of the overlay window will be ignored by
Windows (versions: XP to 10) when another full screen
application is open. The full screen application remains in
the foreground even though the overlay window requests
keyboard focus. Opening the RDB window by applying the
keystroke combination + causes a black screen.
After approximately three seconds the desktop appears and
the full screen application is minimized. While the black
screen is shown, the command will be inserted into the
RDB’s input box and confirmed for execution. The vic-
tim does not notice the command insertion including the
CMD pop up because they only see the black screen. The
same applies to the opening of the WE window by employ-
ing the keystroke combination + . Assuming the
RDB or WE window are opened by applying the WinAPI
call CreateProcessA [47], the black screen, followed
by a switch to the desktop as well as a minimization of
the full screen application, will also occur in case of the
command being inserted into the input box of the RDB or
WE window.

The multiple desktops-based variant of User Imitating is
not noticeable for the victim as all actions do not appear
on their current desktop. The additional desktop (created by
using only the WinAPI call CreateDesktopA [45]) will
be not displayed in Windows’s desktop manager because this
desktop is not completely initialized. In other words, further
processes must be launched on this desktop to register it
for Windows’s desktop manager such as userinit [14].
Furthermore, the victim is unable to switch to this addi-
tional desktop by employing the corresponding keyboard
shortcut.

The inserted commands in the input boxes of the RDB and
WE window will be saved. In case of the user employing
the input boxes, the provided autocompletion feature of these
boxes will suggest the inserted commands.

VI. ANALYSIS
A. FAILURE OF ANTI-VIRUS SOFTWARE
Anti-virus software failed to detect Phantom Ransomware
because behavior blockers were unable to perceive the ma-
licious actions. The Phantom Ransomware masked these ac-
tions as user activity by applying User Imitating.

Behavior blockers protocol the process actions in a flow
graph database. The actions include API calls, access to the
file system etc. A database contains a set of flow graphs.
Each of these flow graphs represents a predefined malicious
behavior pattern. Concurrently to the monitoring of process
actions, a heuristic control flow graph matching algorithm
is employed to estimate similarities between the already
monitored process actions (control flow graph) and the flow
graphs in the data base. Based on the resulting probability,
the process will be classified as malware [76]. Alternatively,
based on the monitored API call sequence, the process is
classified as beingmalicious or benign by applying amachine
learning algorithm. For instance, Naïve Bayes or a Support
Vector Machine [77].

Employed malicious behavior patterns in form of flow
graphs, predefined by behavior blockers, consist of about
five to seven actions. However, patterns for matching the
mimicked user actions in form of the malicious command
insertion based on WinAPI calls by Phantom Ransomware
are nearly impossible to define. The consequence of there be-
ing no clearly defined instructions and order for the insertion
of command characters of a specific command is explained
hereunder. The number and order of the commands, which
are connected together in one line at the WE’s input box
by employing the & operator, is random. Commands such
as move [53] require file paths for the arguments passed
over. These file paths (such as the desktop path) vary for
each machine. This is because the username is contained in
the paths. The inserted command is obfuscated randomly by
applying DOSfucation [63]. Each obfuscated command has a
different length and character sequence, when comparing it to
the same unobfuscated command. For explanatory purposes,
it will be assumed that the unobfuscated command consists of
the following three characters XYZ. It is also assumed that the

164442 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

random DOSfuscation is limited by adding a random amount
of escape characters ˆ to random positions only. For example,
the following two random obfuscated commands would be
possible: XˆY Z and XˆˆYˆZ.
As shown in Table 3, there are two different WinAPI

call sequences for inserting the two randomly obfuscated
commands in the WE’s input box. As explained, the two
obfuscated commands are based on the same unobfuscated
command. Overall, there is a different WinAPI call sequence
for each possible random obfuscation of a specific command.

Table 3. WinAPI call sequences for the insertion of the two random
obfuscated commands in the WE’s input box.

The command characters will not be inserted in its actual
order (from left to right). The character insertion order is
randomized in combination with a corresponding caret move-
ment of the WE’s input box. Furthermore, the suspicious
sending out of thousands of WM_CHAR messages [42] for
the command insertion is concealed by applying multiple
processes. Each process sends out a randomized amount
of about 40 WM_CHAR messages [42], which is less suspi-
cious. Due to the application of User Imitating to start these
processes, there is no parent/child process relation between
the processes. As a result, behavior blockers are unable to
perceive that each of these processes inserts only a part of
the total malicious command. The continuous sending out
of WM_CHAR messages [42] of a single process is concealed
by sending randomly generated messages to other windows
between each sent WM_CHAR message [42].

The definition of malicious behavior patterns based on sent
WM_CHAR messages [42] will result in raising falsely posi-
tive malware classification. For instance, tools for physically
incapacitated people (such as voice control interacting with
the WE window) will be mistakenly identified as malware.
The same applies to the definition of malicious behavior
patterns based on additional desktop creation by employing
the WinAPI call CreateDesktopA [45]. Tools for desktop
managing will be erroneously detected as malicious software,
too.

Detection techniques, that are based on monitoring the
API call sequence in combination with a machine learn-
ing algorithm [77], will not detect Phantom Ransomware.
Only the API call’s function name is considered without
its corresponding arguments. As a consequence, the detec-
tion technique perceives a sequence of SendMessage [35]

WinAPI calls. Nevertheless, this WinAPI call is benign
because it does not damage the system. Phantom Mal-
ware splits up its malicious actions into a sequence of
non-malicious SendMessage [35] WinAPI calls. Defin-
ing a suspicious/malicious amount of SendMessage [35]
WinAPI calls is not practical for any process. This is due to
the fact that PhantomMalware applies multiple processes for
inserting the command. Each of the involved processes inserts
a random amount of command characters. For each inserted
command character, SendMessage [35] is called once.

Behavior blockers do not determine the inserted command
by monitoring the total sequence of sent WM_CHAR mes-
sages [42]. In addition, there is no analysis of malicious
actions on the inserted command.

By receiving a WM_KEYDOWNmessage [25] with the
WE process will execute the command that was inserted in
its input box. Instead of the Phantom Ransomware executing
this command itself, it manipulates the trusted system process
to execute the command. Here, the system process is simply
fooled into perceiving that the user/victim has entered this
command and also confirmed it for execution. In other words,
the behavior blockers mistakenly assumes that this command
execution is legit, namely that the ‘‘user’’ itself has entered
this command and confirmed it for execution. As an example,
the Phantom Ransomware connects to its C&C-Server for
receiving orders (as described in section IV). In this case, for
the operating system and the anti-virus software it mistakenly
looks like the user is writing and executing a script to only
connect to a server and receive data from it. Hence, the exe-
cuted malicious action (as inserted and confirmed command
in the WE’s input box) cannot be traced back to the Phantom
Ransomware process.

B. IDENTIFYING PHANTOM MALWARE’S TARGETED
ENVIRONMENT
An environment is a system configuration such as the oper-
ating system’s version and system language. Environmental-
targeted malware applies an environmental check logic to
identify their targeted systems. If the malware is launched
on its targeted environment, it exposes a malicious behavior.
Otherwise, the malware does not do anything harmful. In
most cases, it terminates [78]. The following section sum-
marises the two techniques GoldenEye [78] and VECG [79]
for detecting the targeted environment of a malware. Further,
it is discussed why these techniques failed to identify Phan-
tom Malware’s targeted environment.

1) GOLDENEYE
GoldenEye analyzes the malware’s environmental check
logic on assembly code level to determine the malware’s
targeted running environment as explained hereunder. Based
on each possible return value of WinAPI calls represent-
ing an environmental query e.g. OpenMutexW [80], vir-
tual environment spaces are constructed dynamically. Inside
these environment spaces the malware is forced by changed
return values to run on different execution paths (branches).

VOLUME 8, 2020 164443



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

For example, when the malware applies the WinAPI call
OpenMutexW [80], the malware will be launched on two
parallelly running environments: In the first environment the
return value is 0 and in the other environment the return
value is 1. After the launch, each corresponding basic block
(from the start of the branch until a jump instruction) is
checked on whether or not it contains any malicious func-
tions or related instructions leading to an interaction with
the environment. If that is the case, the current environment
is selected as being targeted by the malware. If the basic
block applies a termination function such as exit [81],
the current environment is not selected as a target of the
malware. Otherwise, the next (starting from this basic block)
WinAPI call representing an environmental query will be
determined. Thereafter, the complete analysis process starts
again [78].

2) VIRTUAL ENVIRONMENT CONDITION GENERATOR
Instead of triggering the environmental conditions of the mal-
ware by forcing it to execute each of its branches, the Virtual
Environment Condition Generator (VECG) provides these
conditions for affecting malware’s behavior. To identify the
environmental conditions of the malware, it is launched mul-
tiple times: During each execution of the malware, its invoked
WinAPI calls are searched for to find out which of them
represents environmental queries. Based on these queries,
currently not satisfied environmental conditions are deter-
mined. In the next run, VECG satisfies these conditions to
collect new conditions. For instance, the malware checks the
existence of a specific registry key by using the WinAPI call
RegQueryValueExW [82]. Then, the malware is launched
on an environment where this registry key exists. The in-
voked WinAPI calls are analyzed for determining the new
environmental conditions. Conditions identified in previous
malware launches remain satisfied. Due to satisfying the
current environmental conditions, the malware is lead into
a new branch. The complete analysis process ends if all
environmental conditions are satisfied [79].

3) REASON FOR FAILURE
Similar to concealing its harmful actions, the Phantom Mal-
ware is able to apply User Imitating for covering its environ-
mental check logic. In other words, a command representing
this check logic will be inserted in the WE’s input box and
confirmed for execution. The output of this command is re-
layed to a file by employing the < operator [50]. The Phantom
Malware analyses the content of this file representing the
environmental information and checks if it is launched on
its targeted environment. The analysis process is similar to
a string-searching algorithm. Overall, the Phantom Malware
applies only the followingWinAPI calls for its environmental
check logic: SendMessage [35] and ReadFile [52]. The
environmental query is concealed in form of a sequence of
these two WinAPI calls. Besides, CreateDesktopA [45],
SetThreadDesktop [46] and CreateProcessA [47]
are used for additional desktop creation and opening the WE

window on it. Throughout the entire process, the mentioned
WinAPI calls do not query any information about the victim’s
environment. Therefore, GoldenEye [78] and VECG [79] are
unable to identify the environment targeted by a Phantom
Malware.

C. DIFFERENCES TO RELATED WORK
1) UI REDRESSING
First of all, the User Imitating overlay variant conceals the
execution of malicious commands of the malware as mim-
icked user actions. Tabjacking is applied for fooling the user
into an unconscious confirmation of a selected action. This
action was selected by starting a corresponding app which
contains a UI element: If the user presses this UI element
(e.g. button) then the action is executed, such as buying
unwanted software in the Google Play Store. However, there
is a restriction as to which actions can be executed by the
tabjacking attack, as there must exist a UI element on an
already installed app which executes the action by clicking
on it. [10]. User Imitating is able to execute every action in
form of a terminal command. The banking trojan only steals
login credentials [15]. The UI is temporarily modified during
these three attacks. Each attack modifies the UI in a different
way which is presented in the following.

Any windows, that were opened by simulated user actions,
are hidden by the overlay of the User Imitating technique.
This overlay is of full screen size and always in focus. The
tabjacking attack creates a full screen view in the foreground
to cover the app that was opened in the background [8].
The overlay of the banking trojan is only placed on top of
a specific app where the user must login (such as a banking
app for example) [19]. The user shall be fooled into entering
their login data in this overlay instead of in the underlying
app.

The overlay of User Imitating contains a screenshot that
was taken before the overlay was opened. The view created
by the tabjacking attack contains a UI element at the same
relative position as the UI element of the app that is open in
the background. In the background app a specific action is
selected. By clicking on the UI element of this app, the action
is executed [10]. The overlay applied by the banking trojan
is a copy of the underlying app. In other words, the overlay
view and the underlying app view have the same appearance.
The overlay contains UI elements which are indistinguishable
from the UI elements of the underlying app [17].

Due to the screenshot in the overlay that was created by
the User Imitating technique, the victim is fooled into think-
ing that this screenshot is the actual desktop screen. They
only see the full screen sized overlay (desktop screenshot)
in the foreground. The appearance of the view (based on
UI elements, animations etc.) in the foreground, created by
tabjacking attack, shall trick the user into pressing the UI
element contained in this view [8]. This UI element has the
same relative position as the UI element of the app opened in
the background. The overlay of the banking trojan cannot be

164444 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

differentiated from the underlying app. As a result, the user
mistakenly perceives the overlay to be the original app [19].

The user tries to interact with the desktop presented by
the overlay of User Imitating. As the user cannot use the
UI components presented in this screenshot (such as buttons
and text fields - the overlay only contains a picture), the user
does not notice any reactions to their input. Furthermore, this
screenshot is a still image. For instance, the user notices a
frozen video on a website but they are able to hear the corre-
sponding volume. Hence, the user becomes suspicious. The
user is able to interact with the overlay of the banking trojan
and the foreground view of the tabjacking attack because
both views contain UI elements [8], [18]. As such, the user
perceives a reaction to their input such as an inserted character
in a text field induced by a key event. Besides, dynamic UI
elements such as embedded animations do not appear as a
frozen image.

Every user input (keystroke and mouse events) is captured
by the overlay of User Imitating as the overlay is of full screen
size and placed in the foreground. The input will be relayed
to the actually focused window (which was on focus before
the overlay opened) in the background. While the overlay is
open, a window will be opened containing a text field where
commands can be entered. As a result, the command will be
inserted in there. The overlay hides the opened window and
prevents a disturbance by the user. While the command is
inserted, the user is unable to insert additional characters in
the text box of this window. The view created by tabjacking
attack in the foreground is transparent for every UI event.
In other words, every occurring UI event on this view is
automatically relayed by the operating system (Android) to
the view of the open background app. The appearance of
the view in the foreground shall fool the user into clicking
on the UI element which has the same relative position as
the UI element of the app in the background. If the user
clicks on the UI element in the foreground, an OnClick
event [11] occurs on the UI element in the background. The
selected action, such as buying an (unwanted) app, will then
be executed [8]. For malware detection software (anti virus) it
mistakenly looks like the execution of this action has a legit
basis meaning that the execution was intended by the user.
The same applies to the User Imitating technique. However,
the user is able to disturb the tabjacking attack because the
total view in the foreground is transparent for UI events.
For instance, the user can press on the view itself instead
of clicking on a UI element. At the same position in the
background app there is another UI element. By clicking on
it, the selected action is changed. The banking trojan relays
the characters, that were supposed to be entered in a text
field of the overlay, to the corresponding text field of the
underlying app. Due to the overlay, the user is not able to
insert characters into the text fields of the underlying app.
Meanwhile, the entered user input is being monitored [16].
The User Imitating technique does not record this input.

As mentioned above, User Imitating inserts the command
into the text field where commands can be entered. The

character insertion is induced by sending messages to this
text field that represent key events. As a consequence, User
Imitating is independent from any user interaction. In other
words, the user does not need to be fooled into clicking
on a UI element of the overlay to trigger the execution of
the inserted command. For the tabjacking attack, however,
this user interaction is required [8]. The banking trojan is
dependent on user interaction: If the user does not enter their
login data in the overlay then the attacker is not able to receive
the credentials [19].

The overlay of User Imitating is always in focus: If it
loses focus it will request focus again. As a consequence,
the user is unable to switch to other windows or see the
opened windows (e.g. RDB and CMD) and the corresponding
icons in the taskbar. The tabjacking attack and the banking
trojan only place a view over another app [8], [17]. This view
is not allowed to be in focus at all times. Otherwise, the user
would be unable to switch to another view or app. However,
Android does not provide a focus request for apps [72] so,
the user is able to switch to other apps. They notice the app in
the background that was opened by the tabjacking attack. In
case of the banking trojan, the user sees a duplicated view
where they can login. In both cases these views were not
created by the user themselves. Therefore, the user becomes
suspicious. Switching to other windows is prevented by User
Imitating (on Windows) because the overlay constantly re-
quests focus. Moreover, icons of open windows are displayed
in the taskbar, although the taskbar itself is overlayed with a
screenshot before the windows have been opened. Therefore,
the victim will not see these icons in the taskbar (presented in
the screenshot).

The overlay applied by User Imitating is created even
before the window, containing a text field that is able to
execute an inserted command, is opened. This masks the
opening (pop up) of the window in combination with the
overlay having the always on top property. The tabjacking
attack creates the view in the foreground before opening the
app in the background [8]. As a consequence, the user only
perceives the view in the foreground instead of the app in the
background. The banking trojan on the other hand creates the
overlay after the specific app has been opened [19].

The overlay of User Imitating closes after the command
has been executed. Afterwards, the actually focused window
is set back to focus. Over and above, the overlay is open for
about 500 ms. Due to the user input being relayed to the
actually focused window, the user mistakenly perceives the
frozen image (caused by the overlay) as a temporary fault of
a process for desktop displaying. The view created by the
tabjacking attack in the foreground is not closed after the
user clicks on the UI element: The view is closed by the
user themselves [8]. Once the user clicks on the UI element
in the foreground, the app in the background will be closed.
The overlay of the banking trojan closes if the user confirms
their entered login data, such as by pressing a button. There-
after, the recorded login credentials are sent to the attacker.
The event for confirming the login data is mimicked to the

VOLUME 8, 2020 164445



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

app which was underlayed by the overlay. This results in the
app processing the login data [17], [19].

In summary, the overlay variant of User Imitating has the
following advantages over the related work:

• Every action can be executed by this attack in form of a
terminal command. There does not exist a restriction as
to which actions can be executed.

• The user cannot disturb the attack by interacting with the
total desktop/screen.

• The attack does not require an interaction with the user.
The user does not need to be fooled into clicking on a UI
element to trigger the execution of an action.

• The user is unable to notice windows opened by this
attack (such as RDB and CMD).

In comparison with the related work, the only disadvantage
of the overlay variant of User Imitating is the frozen image
induced by the presence of the overlay itself.

Moreover, the multiple desktops variant of User Imitating
covers the open window where the command is inserted by
opening it on an additional desktop. This desktop is an addi-
tional instance for user interaction. In other words, the current
user and the User Imitating multiple desktops variant do not
share the same user interface. As a consequence, this variant
does not need an overlay to cover the open window where the
command is inserted. Overall, the multiple desktops variant
of User Imitating has the same advantages and no disadvan-
tages as the overlay-based variant, compared with the related
work.

2) BADUSB DEVICES BASED ON KEYSTROKE INJECTION
PhantomMalware is a type of malicious software. ABadUSB
device is a USB device simulating a further hidden (not ob-
viously visible) USB device with a malignant behavior [20].
Hence, the BadUSB attack requires physical access. There-
fore, it must be plugged into the victim’s machine. The in-
stallation of the PhantomMalware is the same as the malware
installation. In many cases, the victim is fooled into opening
an infected file by a social engineering technique. Here,
physical access is not required.

BadUSB devices are applied to drop and install malware
on the victim’s machine by mimicking keystrokes [28]. The
Phantom Malware applies User Imitating to conceal the ex-
ecution of all its malicious actions. Messages representing
key events will be sent to a textbox by the Phantom Mal-
ware. These messages will insert and confirm the malicious
command in the textbox, which itself is capable of executing
the command. The simulated key events by User Imitating
are software-based. Hence, the Phantom Malware is able to
emulate key events to windows which are not in focus by
sending corresponding messages to them. The keystrokes
mimicked by a BadUSB device are hardware-based. During
the installation of a BadUSB device, the operating systemwill
mistakenly perceive it as being a ‘‘keyboard’’ because of its
modified firmware. This ‘‘keyboard’’ responds to key event
pooling requests by the USB controller with corresponding

key events. These key events shall be mimicked [22]. The
operating system (here: Windows) is tricked into generating
internal messages such as WM_KEYDOWN [25] which will
be sent to the focused window [14]. As a consequence,
the BadUSB device is only capable of simulating keystrokes
for the focused window.

The BadUSB device opens a terminal by emulating a
keyboard shortcut, which is specific to the operating system.
Because this terminal window has focus, it is in the desktop
foreground. As a result, the victim notices the open window
containing characters that were or are inserted into its termi-
nal line. These characters were or are not typed by the victim
themselves. This results in the victim becoming suspicious.
Also, this attack can also be disturbed by the victim. This
would be the case when both the victim and the BadUSB
device type concurrently or if the victim sets another win-
dow to focus. The User Imitating technique, applied by the
Phantom Malware, conceals the existence and any additional
pop up of open windows. The opening and pop up would be
evoked by messages sent by the User Imitating technique.
The concealing is based on opening the windows on a not
active, additional desktop. This additional desktop does not
have keyboard focus. Hence, a disturbance by the victim is
prevented.

If the BadUSB device is plugged out by the user/victim,
then the attack (malware dropping and installation) is
stopped. In any case, the attack is finished in less than ap-
proximately one second. To stop the attack of a Phantom
Malware its corresponding process must be identified and
terminated.

Phantom Malware checks the successful execution of its
command. The > operator [50] is used to redirect the output
of the command into a file. Afterwards, the content of this
file will be read and analyzed. Therefore, Phantom Malware
is able to react in cases of an error. BadUSB devices cannot
react in such cases as they are not able to detect them in the
first place. The keyboard mimicked by the BadUSB device
is only able to interact with the victim’s system in form of
responding to polling requests by the USB controller. As a
result, this keyboard cannot interact with the file system such
as reading files.

VII. FURTHER RESEARCH AND IMPROVEMENTS
A. ANTHROPOMORPHIC KEYSTROKE SIMULATION
WM_CHARmessages [42] sent to a window element are iden-
tical to key events for this element [27]. In case of a text box,
a character corresponding to the key event will be inserted
there. On the whole, Phantom Malware sends out approxi-
mately 1000 WM_CHAR messages [42] per second. the Phan-
tomMalware waits until a message has been processed by the
window. The applied WinAPI function SendMessage [35]
blocks the calling thread until this has happened [35]. Overall,
the thread is blocked for about 1 ms.

The inter-keystroke interval (IKI) is the time difference
between two key press events [83]. The Phantom Malware

164446 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

has an IKI of about 1 ms. In contrast, the human’s average
IKI amounts to approximately 140 ms [84]. For this reason,
the character sequence inserted by the Phantom Malware
is too high to be caused by a humane user. A human is
unable to type with a writing speed of about 1000 characters
per seconds. A next research step would be the development
of techniques for giving the character insertion sequence by
the Phantom Malware a more humane characteristic. For
instance, the waiting time between two sent WM_CHAR mes-
sages [42] representing two adjoining keys on the keyboard
must be lower than for keys that are far apart from each other.
Also, the Phantom Malware increases its execution speed by
inserting commands concurrently in input boxes of multiple
opened WE windows. A humane user cannot type in two or
more different windows concurrently. As a result, this speed
optimization must be disabled to mimic an authentic user.
On the whole, Phantom Malware’s execution speed will be
decreased by a factor of how many processes are launched
for multiple command insertion.

B. AUTOMATION OF PHANTOM TRANSFORMATION
The conversion process of a malware without User Imitating
into its corresponding Phantom Malware version is called
Phantom Transformation. It is possible to convert every mal-
ware without User Imitating into its corresponding Phantom
Malware version. If a malicious action cannot be realized
based on terminal commands, a script will be dropped
and executed by employing User Imitating. Alternatively,
an executable file (.exe), that only performs this action,
will be dropped and launched by applying User Imitating.
The Phantom Transformation was done manually for the
mentioned Phantom Ransomware in section V. However,
the converting process was intricate and time consuming. A
further research step would be the automation of this transfor-
mation: The source code of a malware without User Imitating
shall be scanned for malicious actions. Subsequently, parts
of this source code, representing the malicious actions, shall
be replaced with code leading to the same results as the
replaced one, but here User Imitating shall be employed.
The commands (inserted into the WE’s input box) must be
automaticallymodified to redirect their output to a file. As file
paths vary for each machine, a placeholder character must be
contained in the path to this file. Instead of inserting the place-
holder character, its representing file path shall be inserted
which was determined before. Accordingly, these modified
commands shall be encrypted. In other words, storing the
encrypted command in program memory, such as in the form
of an array data structure with corresponding decryption
key, is automated. Before compiling, automatically generated
source code shall be added for implementing the following
Phantom Malware functionalities:

• Select a random number of commands which will be
connected in one line at the WE’s input box by using
the & operator [55]. In addition, the order of these com-
mands is randomized.

• Before inserting a command, it will be completely
decrypted. Following, this command will be randomly
obfuscated by applying DOSfucation [63]. Before
decrypting the next command for its obfuscation,
the current decrypted command in memory must be
encrypted.

• To insert the encrypted command into the WE’s input
box, one of its charactersmust be decrypted. Afterwards,
the character is sent to the WE’s input box and inserted
there. The current decrypted command character must
be overwritten, before decrypting and inserting the next
character. This process continues until the command has
been inserted completely.

• Randomize the command character insertion order in
combination with a corresponding caret position move-
ment.

• Increase the execution speed by inserting commands
into input boxes of multiple opened WE windows con-
currently.

• Conceal a suspicious amount of sent WM_CHAR mes-
sages [42] by employing multiple processes. These
processes are opened by applying User Imitating.

• Analyze the content of the file (which the command
output is redirected to) for an occurred error based on
the executed command.

C. OBFUSCATION OF ENCRYPTED COMMANDS
In consequence of obfuscation purposes, a random number of
commands shall be selected by the Phantom Malware which
will be connected together in one line by applying the &
operator [55]. Each of these commands is encrypted in
memory. In order to randomly obfuscate each command by
employing DOSfuscation, each command must be decrypted
before the obfuscation process. After a command is obfus-
cated, it shall be encrypted. Before decrypting and obfus-
cating the next command, the current command in process
memory must be overwritten. However, the existence of only
one decrypted command in memory at any time can be used
for a detection by memory scanners. Based on a decrypted
command, signatures shall be created to detect Phantom
Malware. As a result, a further research step would be the
development of an advanced possibility for command obfus-
cation: The commandsmust not be decrypted for obfuscation.
In order words, an encrypted command must be randomly
obfuscated by applying DOSfuscation.

D. STEAL SENSITIVE INFORMATION
In addition to inserting and executing a command in theWE’s
input box, the Phantom Malware interacts with specific win-
dows for stealing information such as login data in password
managers. Reading files that contain this kind of information
by using WinAPI calls will be seen as suspicious.

The Phantom Malware opens Firefox on the additional
desktop. As the next step, the Phantom Malware opens the
password manager of Firefox (version: 70.0.1) by inserting

VOLUME 8, 2020 164447



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

about:logins into its search bar. The inserted text will
be confirmed by sending a WM_KEYDOWN message [25]
with . Firefox’s password manager enables the user
to copy their login data (username and password) to the
clipboard. As a consequence, the Phantom Malware sends
corresponding Windows Messages to the Firefox window in
order to trigger this copying process. Thereafter, the Phantom
Malware reads out the clipboard by using the WinAPI call
GetClipboardData [85], representing the login data.

However, the described attack does not work for password
managers which request the current user to enter their pass-
word before copying the login data to the clipboard. In other
words, passwordmanagers such as the one of Google Chrome
(version: 79.0.3945.117) verify that this action is induced
by the real user. Firefox does not employ this verification
process.

A next research step would be the development of artificial
intelligence (AI) based techniques capable of scanning the
taken window screenshot to receive sensitive information,
such as emails: As an example, Thunderbird (email client)
is opened on the additional desktop. Hereafter, a screen-
shot of the opened window will be taken. An AI-based
algorithm analyzes this screenshot and lists up all emails.
Subsequently, the AI interacts with Thunderbird by sending
Windows Messages in order to open emails. For each opened
email, a screenshot will be taken and scanned by the AI to
convert it into strings such as the subject and the body of an
email.

E. ADVANCED USER IMITATING
Users conveniently interact with windows directly that pro-
vide the corresponding functionality in order to execute their
desired action. Another option would be to insert and confirm
a command in theWE’s input box which executes this action.
In consequence of giving the Phantom Malware’s command
execution a more humane characteristic, further research
steps would be the development of techniques for interacting
with specific windows on the additional desktop.

For instance, a file shall be moved to another directory. As
mentioned in section IV, moving the file is part of the file
encryption process by Phantom Ransomware. The Phantom
Malware interacts with the WE window to perform this ac-
tion. The window provides access to the file system by listing
all files of the currently selected directory and moving these
files to another directory by Copy and Paste. Corresponding
Windows Messages are sent by the Phantom Malware to the
WE window in order to execute the following actions for
employing this Copy and Paste functionality:

1) The absolute directory path of the file which shall be
moved into another directory will be inserted into the
WE’s input box and confirmed. The WE window lists
up all files of this selected directory by showing them
in form of icons.

2) The icon representing the file, which shall be moved
into another directory, will be selected by mimicking

corresponding and keystrokes for the WE
window.

3) By simulating the key event + for theWEwin-
dow, the selected file will be copied to the clipboard.

4) The absolute directory path of where the selected file
shall be copied to (destination folder), will be inserted
and confirmed in the WE’s input box.

5) By emulating the key event + for the WE
window, the file copied to the clipboard (step 3) will
be inserted into the destination directory. This directory
was selected in the previous step.

As another example, a file shall be overwritten by the
Phantom Malware. The overwriting process shall be sim-
ilar to how the humane user would conduct it: Instead
of applying a command for this action, the user interacts
with an editor program. The Phantom Malware sends cor-
responding Windows Messages to the WE window for ex-
ecuting the following actions in order to open the file. For
this process it uses Notepad [86] (preinstalled editor in
Windows):

1) The absolute file’s directory path will be inserted and
confirmed in the WE’s input box. All files of the se-
lected directory are listed and displayed in form of
icons.

2) The icon representing the file will be selected by mim-
icking corresponding and keystrokes for the
WE window.

3) The context menu for this file icon will be opened.
4) By emulating corresponding and keystrokes

for the WE window, the entry Open with will be se-
lected in this context menu.

5) For confirming the selected context menu entry,
an keystroke is mimicked for the WE window.
Afterwards, a window opens containing a list of pro-
grams which are able to open the file. This file was
selected in step 2.

6) In this window, the entry for opening the file with
Notepad [86] will be selected by simulating cor-
responding and keystrokes for the WE
window.

7) By emulating an keystroke for the WE window,
the selected entry will be confirmed in order to open
the file with Notepad [86].

The text contained in Notepad’s text box represents the
file content. To change this text, the Phantom Malware
sends a WM_SETTEXT message [43] to this text box. Af-
terwards, the Phantom Malware emulates the key event

+ for the Notepad’s text box by sending corre-
sponding WM_KEYDOWN [25] and WM_KEYUPmessages [26]
to the text box. As a consequence, the file will be over-
written with the content of Notepad’s text box. Instead
of overwriting the file, the Phantom Malware is able to
read the content of the text box (representing the file con-
tent) by sending a WM_GETTEXT message [87] to the
text box.

164448 VOLUME 8, 2020



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

VIII. MEASURES AGAINST PHANTOM MALWARE
As presented in section V, tested anti-virus software was not
able to detect the Phantom Ransomware. The implementa-
tion of this ransomware was discussed in section IV. Over
and above, state of the art malware detection techniques are
focused on the interaction of a program with the operat-
ing system’s API (system calls) for malware classification.
Phantom Malware, however, interacts with the user inter-
face (desktop) for executing its malicious actions.

There are various countermeasures that can be applied
against it:
• Only the text box shall receive and process WM_CHAR
messages [42] in case the window containing this text
box is on the current, active desktop. Otherwise, the cor-
responding process of this window must buffer these
messages. If this window is set to keyboard focus,
the corresponding characters based on the buffered
WM_CHAR messages [42] will be inserted into its text
box. Between the insertion of two characters, there is a
waiting time of about 500 ms which enables the user to
react.

• Alternatively, if a text box receives a WM_CHAR mes-
sage [42], it shall be set to keyboard focus. In this
case, the window containing the text box exists on an
additional desktop which is not currently active. Hence,
there must be a switch to this desktop. As another option,
the window shall be transferred to the current active
desktop. This will result in the user immediately noticing
if a command is being inserted into the WE’s input box.

• If a user process sends messages to, for example, a win-
dow that belongs to another process, it would also be
possible that the operating system blocks this action by
default. Besides, this action will be reported to the user
such as in the form of a message box. The user is able
to give the process privileges for sending messages to a
windows associated to another process. So far, OS X is
the only operating system which reports an action like
this.

• Nevertheless, a complete disabling of WM_CHAR mes-
sages [42] sent to windows, which do not belong to the
same process, is not practical. This goes back to the
reason that tools such as voice control are employed
by physically incapacitated people. In this way it may
be seen as a discrimination. Besides, tools for remote
maintenance apply this functionality, too [71].

• A process shall be not allowed to switch to another
(additional) desktop by employing a corresponding API
call or terminal command without the user’s awareness.
Therefore, the operating system must notify the user
about this action such as in the form of displaying a
message box. Then, the user is able to allow the process
to switch to its desired desktop.

• Windows, Mac OS and Linux present the existence of
an additional desktop only if there is an explicit request
by the user such as opening the desktop manager. As a
consequence, the user is unable to perceive the Phantom

Malware’s actions on the additional desktop. However,
if there is an additional desktop, then its existence and
any opened windows on this desktop shall be shown on
the current desktop. For instance, the desktop manager
shall be integrated into the desktop taskbar such as in
Solaris (version: 11.3): Each desktop is displayed in
the form of a rectangle on the right end of the desktop
taskbar. All open windows on a desktop are displayed
by this desktop manager as further rectangles inside
the initial rectangle which represents the desktop. As
a result, the user is able to notice any windows whose
opening has not been caused by themselves and becomes
suspicious.

• If user’s actions induce a disabling of the operating
system’s security features such as the firewall or shadow
files, then the user must identify themselves. This ver-
ification process shall be similar to Google Chrome’s
password manager. In this example, a window opens
and the user must enter their password before shadow
files are deleted. This also applies when the user has
privileges for the action. Hence, it is secured that the real
user has intended this action.

• User input (key and mouse events) is represented by
the operating system (here: Windows) in the form of
messages such as WM_CHAR [42], WM_KEYDOWN [25]
and WM_LBUTTONDOWN [34]. These messages are sent
to corresponding windows. Afterwards, the thread of
the window will process the received message (thread
message loop) [27]. However, the operating system does
not differentiate between real user input and simulated
user input. Real user input is induced by a device
(e.g. keyboard: key events) and simulated user input
is generated by sending a corresponding message to
a window which represents this input (e.g. key event:
WM_CHAR [42] message). The device driver will deter-
mine the exact form of user input (e.g: keyboard: pressed
key). Thereafter, a WM_CHAR [42] message is pushed
to the System Message Queue. Accordingly, a system
process will send this message to the focused window.
This window is unable to distinguish if this message was
generated by a device driver (real user input) or by a
process (simulated user input). A window must be able
to differentiate messages that represent real or simulated
user input. If thesemessages represent simulated user in-
put, they shall contain an unchangeable tag such as PID
(process identifier) which identifies the sender process.
Simulated user input must be ignored by windows of
system processes such as the WE. In case of physically
incapacitated people, system processes must only react
to simulated user input by a specific process e.g. voice
control.

IX. CONCLUSION
This paper contributed the approach of the User Imitating
technique: Two variants of this technique were introduced.
Harmful actions of the malware are concealed by simulated

VOLUME 8, 2020 164449



T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

user behavior. The mimicked user actions induce a change
of the user interface such as opened windows. In order to
prevent the user to become suspicious, all changes induced
by the simulated user actions must be hidden, too.

The concept of the PhantomMalware has been contributed
by this paper as well. This novel type of malware executes all
of its malicious actions by applying the User Imitating mul-
tiple desktop variant. Overall, this malware masks all of its
malicious actions by inserting corresponding commands into
a text box that is able to execute them. A window containing
this text box is opened on an additional desktop. However,
this desktop is currently not active (not on keyboard focus).
The victim only perceives windows on their current, active
desktop. Overall, they do not notice the command insertion
and confirmation on the additional desktop.

The WE is a preinstalled file manager and a fundamental
part of the desktop environment of Windows [14], which
makes this process trustworthy. Due to inserting and confirm-
ing a malicious command in the WE’s input box, this trusted
system process is manipulated to execute the command. Anti-
virus software will not block actions of a trusted system
because it is considered bad practice. Besides, the operating
system including modules of anti-virus software, such as
behavior blockers, are fooled into perceiving that the user
themselves has done the command insertion and its confirma-
tion. In other words, it mistakenly looks like the execution of
the malicious command has a legit basis with the user having
intented the execution.

State of the art behavior blockers were unable to detect
Phantom Malware. The creation of behavior rules (pat-
terns) for matching the manipulation of the trusted system
process based on faked user actions (inserting the com-
mand) is impossible. The reason is that there is no exactly
defined insertion order of the command characters. Before
inserting it, the command will be obfuscated by applying
DOSfuscation. This obfuscation is random. For example,
a random amount of escape characters will be added in
between the command characters. A detection based on
faked user actions will falsely classify tools for physically
incapacitated people e.g. voice control as Phantom Malware.
These tools are based on an interaction with other windows
for allowing physically incapacitated people a barrier-free
computer usage. This interaction is induced by sending e.g.
WM_CHAR messages [42] to text boxes for text/command
insertion.

Multiple processes with a masked child/parent relation are
applied by the Phantom Malware which insert a random part
of the command into the WE’s input box. Therefore, limiting
the amount of WM_CHAR messages [42], which a process is
allowed to send before further messages are blocked, does
not prevent Phantom Malware. In addition, it is not possible
to detect Phantom Malware by monitoring and analyzing the
command inserted by a process and its corresponding child
processes.

Over and above, Phantom Malware is a serious threat for
both private and commercial users. The measures against it,

mentioned in section VIII, shall be realized and inspire the
development of further ones.

CONFLICT OF INTEREST STATEMENT
The author declares that the research was conducted in the
absence of every commercial or financial relationships that
could be construed as a potential conflict of interest.

ACKNOWLEDGMENT
The author would like to thank Karsten Hahn for valu-
able feedback and discussions. He would also like to
thank Christian Burmester for the spell check and valuable
proofreading. He acknowledge support by Deutsche
Forschungsgemeinschaft (DFG) andOpenAccess Publishing
Fund of Osnabrück University.

References
[1] M. Fadli Zolkipli and A. Jantan, ‘‘An approach for malware behavior

identification and classification,’’ in Proc. 3rd Int. Conf. Comput. Res.
Develop., vol. 1, Mar. 2011, pp. 191–194.

[2] I. You and K. Yim, ‘‘Malware obfuscation techniques: A brief survey,’’ in
Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., Nov. 2010,
pp. 297–300.

[3] W. Liu, P. Ren, K. Liu, and H.-X. Duan, ‘‘Behavior-based malware anal-
ysis and detection,’’ in Proc. 1st Int. Workshop Complex. Data Mining,
Sep. 2011, pp. 39–42.

[4] G. Cabau, M. Buhu, and C. P. Oprisa, ‘‘Malware classification based on
dynamic behavior,’’ in Proc. 18th Int. Symp. Symbolic Numeric Algorithms
Sci. Comput. (SYNASC), Sep. 2016, pp. 315–318.

[5] J. A. Marpaung, M. Sain, and H. J. Lee, ‘‘Survey on malware evasion
techniques: State of the art and challenges,’’ in Proc. 14th Int. Conf. Adv.
Commun. Technol. (ICACT), Feb. 2012, pp. 744–749.

[6] M. Niemietz, ‘‘Analysis of ui redressing attacks and countermea-
sures,’’ Doctoral thesis, Ruhr-Universität Bochum, Universitätsbibliothek,
Bochum, Germany, 2019.

[7] L.-S. Huang, A. Moshchuk, H. Wang, S. Schechter, and C. Jackson,
‘‘Clickjacking: Attacks and defenses,’’ in Proc. 21st USENIX Conf. Secur.
Symp., Vancouver, BC, Canada, Aug. 2012, p. 22.

[8] M. Niemietz and J. Schwenk, ‘‘Ui redressing attacks on Android
devices,’’ in Proc. Black Hat Abu Dhabi, 2012. [Online]. Available:
https://pdfs.semanticscholar.org/b059/62d6d6510f274a31edfae2c8babee9
acaac2.pdf

[9] A. SankaraNarayanan, ‘‘Clickjacking vulnerability and countermeasures,’’
Int. J. Appl. Inf. Syst., vol. 4, no. 7, pp. 7–10, Dec. 2012.

[10] M. Niemietz and J. Schwenk, ‘‘Out of the dark: UI redressing and trustwor-
thy events,’’ in Proc. 16th Int. Conf. (CANS), Hong Kong, Nov./Dec. 2018,
pp. 229–249.

[11] Android: View.OnClickListener. Accessed: Oct. 4, 2019. [Online].
Available: https://developer.android.com/reference/android/view/View.
OnClickListener

[12] T. Luo, X. Jin, A. Ananthanarayanan, andW.Du, ‘‘Touchjacking attacks on
Web in Android, iOS, and windows phone,’’ in Foundations and Practice
of Security, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, A. Miri,
and N. Tawbi, Eds. Berlin, Germany: Springer, 2013, pp. 227–243.

[13] Android: View. Accessed: Oct. 4, 2019. [Online]. Available:
https://developer.android.com/reference/android/view/View

[14] P. Yosifovich, M. E. Russinovich, D. A. Solomon, and A. Ionescu, Win-
dows Internals, Part 1: System Architecture, Processes, Threads, Memory
Management, and More, 7th ed. Redmond, WA, USA: Microsoft Press,
2017.

[15] L. Å. Tefanko, ‘‘Android banking malware sophisticated trojans vs. fake
banking apps,’’ ESET, Bratislava, Slovakia, Tech. Rep., 2019.

[16] A. Kalysch, D. Bove, and T. Müller, ‘‘How Android’s UI security is under-
mined by accessibility,’’ in Proc. 2nd Reversing Offensive-Oriented Trends
Symp. ZZZ (ROOTS). New York, NY, USA: Association for Computing
Machinery, 2018, pp. 1–10, doi: 10.1145/3289595.3289597.

[17] Y. Fratantonio, C. Qian, S. P. Chung, andW. Lee, ‘‘Cloak and dagger: From
two permissions to complete control of the UI feedback loop,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2017, pp. 1041–1057.

164450 VOLUME 8, 2020

http://dx.doi.org/10.1145/3289595.3289597


T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

[18] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li, and
Y. Liu, ‘‘Understanding and detecting overlay-based Android malware
at market scales,’’ in Proc. 17th Annu. Int. Conf. Mobile Syst., Appl.,
Services. New York, NY, USA: Association for Computing Machinery,
2019, pp. 168–179, doi: 10.1145/3307334.3326094.

[19] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. Halderman, Z. Mao, and
A. Prakash, ‘‘Android UI deception revisited: Attacks and defenses,’’ in
Proc. Int. Conf. Financial Cryptogr. Data Secur., May 2017, pp. 41–59.

[20] N. Nissim, R. Yahalom, and Y. Elovici, ‘‘USB-based attacks,’’ Comput.
Secur., vol. 70, pp. 675–688, Sep. 2017.

[21] K. Suzaki, Y. Hori, K. Kobara, and M. Mannan, ‘‘DeviceVeil: Robust
authentication for individual USB devices using physical unclonable func-
tions,’’ in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2019, pp. 302–314.

[22] F. Griscioli, M. Pizzonia, and M. Sacchetti, ‘‘USBCheckIn: Preventing
BadUSB attacks by forcing human-device interaction,’’ inProc. 14th Annu.
Conf. Privacy, Secur. Trust (PST), Dec. 2016, pp. 493–496.

[23] Universal Serial Bus Specification, Compaq, Hewlett-Packard, Intel, Lu-
cent, Microsoft, NEC, Philips, Palo Alto, CA, USA, Apr. 2000.

[24] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
8th ed. Hoboken, NJ, USA: Wiley, 2008.

[25] WM_KEYDOWN Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-keydown

[26] WM_KEYUP Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-keyup

[27] About Keyboard Input. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/inputdev/about-
keyboard-input

[28] E. Karystinos, A. Andreatos, and C. Douligeris, ‘‘Spyduino: Arduino as a
HID exploiting the BadUSB vulnerability,’’ inProc. 15th Int. Conf. Distrib.
Comput. Sensor Syst. (DCOSS), May 2019, pp. 279–283.

[29] Invoke-WebRequest. Accessed: Jun. 1, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.utility/invoke-webrequest?view=powershell-7

[30] B. Stroustrup, The C++ Programming Language, 4th ed. Reading, MA,
USA: Addison-Wesley, 2013.

[31] Market Share Statistics for Internet Technologies–Operating
System Popularity. Accessed: Feb. 29, 2020. [Online]. Available:
https://netmarketshare.com/operating-system-market-share.aspx

[32] GetForegroundWindow Function. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-getforegroundwindow

[33] SetWindowPos Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-setwindowpos

[34] WM_LBUTTONDOWNMessage. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-
lbuttondown

[35] SendMessage Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-sendmessage

[36] WM_Activateapp Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-
lbuttondown

[37] GetGUIThreadInfo Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-getguithreadinfo

[38] Guithreadinfo Structure. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-
winuser-guithreadinfo

[39] SetForegroundWindow Function. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-setforegroundwindow

[40] SendInput Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-sendinput

[41] GetWindowTextA Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-getwindowtexta

[42] WM_CHAR Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-char

[43] WM_SETTEXT Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-settext

[44] PostMessageA Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-postmessagea

[45] CreateDesktopA Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-createdesktopa

[46] SetThreadDesktop Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-setthreaddesktop

[47] CreateProcessA Function. Accessed: Oct. 4, 2019. [Online].
Available: https://docs.microsoft.com/en-us/windows/win32/api/
processthreadsapi/nf-processthreadsapi-createprocessa

[48] Startupinfoa Structure. Accessed: Oct. 4, 2019. [Online].
Available: https://docs.microsoft.com/en-us/windows/win32/api/
processthreadsapi/ns-processthreadsapi-startupinfoa

[49] CloseDesktop Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-closedesktop

[50] About Redirection. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/about/about_redirection?view=powershell-6

[51] Attrib. Accessed: Oct. 4, 2019. [Online]. Available: https://docs.microsoft.
com/en-us/windows-server/administration/windows-commands/attrib

[52] ReadFile Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
readfile

[53] Move. Accessed: Oct. 4, 2019. [Online]. Available: https://docs.microsoft.
com/en-us/windows-server/administration/windows-commands/move

[54] ReadConsoleOutput Function. Accessed: Oct. 4, 2019.
[Online]. Available: https://docs.microsoft.com/en-us/
windows/console/readconsoleoutput

[55] Command Shell Overview. Accessed: Sep. 10, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-xp/bb490954(v=technet.10)

[56] Beast: Overcoming Limits of Traditional Malware Detection, G Data Cy-
berDefense, Bochum, Germany, 2019.

[57] BCDEdit Command-Line Options. Accessed: Oct. 4, 2019.
[Online]. Available: https://docs.microsoft.com/en-us/windows-
hardware/manufacture/desktop/bcdedit-command-line-options

[58] Vssadmin Delete Shadows. Accessed: Oct. 4, 2019. [On-
line]. Available: https://docs.microsoft.com/en-us/windows-
server/administration/windows-commands/vssadmin-delete-shadows

[59] Volume Shadow Copy Service. Accessed: Oct. 4, 2019. [Online].
Available: https://docs.microsoft.com/en-us/windows-server/storage/file-
server/volume-shadow-copy-service

[60] CreateFileA Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
createfilea

[61] D. Gookin, Advanced MS-DOS Batch File Programming. New York,
NY, USA: Windcrest, 1991. [Online]. Available: https://books.google.
de/books?id=NXUhAQAAIAAJ

[62] M. Russinovich. TCPView v3.05. Accessed: Oct. 29, 2020. [Online]. Avail-
able: https://docs.microsoft.com/en-us/sysinternals/downloads/tcpview

[63] Dosfuscation: Exploring the Depths of cmd.exe Obfuscation, FireEye,
Milpitas, CA, USA, 2018.

[64] EM_SETSEL Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/controls/em-setsel

[65] WriteFile Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
writefile

[66] SetWindowsHookExA Function. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-setwindowshookexa

[67] HOOKPROC Callback Function. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/api/winuser/nc-
winuser-hookproc?redirectedfrom=MSDN

[68] Echo. Accessed: Oct. 4, 2019. [Online]. Available: https://docs.microsoft.
com/en-us/windows-server/administration/windows-commands/echo

[69] Library Functions–System. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/
com.ibm.zos.v2r1.bpxbd00/systm.htm

VOLUME 8, 2020 164451

http://dx.doi.org/10.1145/3307334.3326094


T. N. Witte: Phantom Malware: Conceal Malicious Actions From Malware Detection Techniques

[70] B. P. Miller, G. Cooksey, and F. Moore, ‘‘An empirical study of the
robustness of MacOS applications using random testing,’’ in Proc. 1st Int.
Workshop Random Test. (RT), New York, NY, USA, 2006, pp. 46–54, doi:
10.1145/1145735.1145743.

[71] T. Witte, ‘‘Mouse underlaying: Global key and mouse listener based on
an almost invisible window with local listeners and sophisticated focus,’’
ICST Trans. Secur. Saf., vol. 5, no. 15, Oct. 2018, Art. no. 155740.

[72] M. Song, H. Song, and X. Fu, ‘‘Methodology of user interfaces design
based on Android,’’ in Proc. Int. Conf. Multimedia Technol., Jul. 2011,
pp. 408–411.

[73] J. Rutkowska and R. Wojtczuk, ‘‘Qubes os architecture,’’ Invisible Things
Lab, Berlin, Germany, Tech. Rep., 2010.

[74] Copy. Accessed: Oct. 4, 2019. [Online]. Available: https://docs.microsoft.
com/en-us/windows-server/administration/windows-commands/copy

[75] CopyFile Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-copyfile

[76] S. Cesare and Y. Xiang, ‘‘A fast flowgraph based classification system for
packed and polymorphic malware on the endhost,’’ in Proc. 24th IEEE Int.
Conf. Adv. Inf. Netw. Appl., Apr. 2010, pp. 721–728.

[77] D. Uppal, R. Sinha, V. Mehra, and V. Jain, ‘‘Malware detection and
classification based on extraction of API sequences,’’ in Proc. Int. Conf.
Adv. Comput., Commun. Informat. (ICACCI), Sep. 2014, pp. 2337–2342.

[78] Z. Xu, J. Zhang, G. Gu, and Z. Lin, ‘‘Goldeneye: Efficiently and effectively
unveiling malware’s targeted environment,’’ in Research in Attacks, Intru-
sions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds. Cham,
Switzerland: Springer, 2014, pp. 22–45.

[79] M. Alaeiyan, S. Parsa, and M. Conti, ‘‘Analysis and classification
of context-based malware behavior,’’ Comput. Commun., vol. 136,
pp. 76–90, Feb. 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0140366418300410

[80] OpenMutexW Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-
synchapi-openmutexw

[81] Exit, _Exit, _Exit. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/exit-
exit-exit?view=vs-2019

[82] RegQueryValueExW Function. Accessed: Oct. 4, 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-
winreg-regqueryvalueexw

[83] S. Pinet, C. Zielinski, S. Mathôt, S. Dufau, F.-X. Alario, andM. Longcamp,
‘‘Measuring sequences of keystrokes with jsPsych: Reliability of response
times and interkeystroke intervals,’’ Behav. Res. Methods, vol. 49, no. 3,
pp. 1163–1176, Jun. 2017.

[84] V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, ‘‘Observations
on typing from 136 million keystrokes,’’ in Proc. CHI Conf. Hum. Factors
Comput. Syst. (CHI), New York, NY, USA, 2018, pp. 646:1–646:12, doi:
10.1145/3173574.3174220.

[85] GetClipboardData Function. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-
winuser-getclipboarddata

[86] Windows Notepad. Accessed: Oct. 4, 2019. [Online]. Available:
https://www.microsoft.com/en-us/p/windows-notepad/9msmlrh6lzf3

[87] WM_GETTEXT Message. Accessed: Oct. 4, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-gettext

TIM NIKLAS WITTE was born in Osnabrück,
Germany, in 1998. He is currently pursuing the
B.Sc. degree in computer science with Osnabrück
University, Germany. He is also a Cyber Security
Researcher and a White Hat Hacker. His main
research interests include attacks against operating
systems and networks.

164452 VOLUME 8, 2020

http://dx.doi.org/10.1145/1145735.1145743
http://dx.doi.org/10.1145/3173574.3174220

